Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "wytwarzanie energii elektrycznej" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Influence of electric power generation structure on frequency control — mathematical modelling
Wpływ struktury wytwarzania energii elektrycznej na regulację automatyczną częstotliwości — modelowanie matematyczne
Autorzy:
Domachowski, Z.
Ghaemi, M.
Powiązania:
https://bibliotekanauki.pl/articles/172835.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
pakiet 3x20
energia elektryczna
wytwarzanie energii elektrycznej
"3x20" package
electricity
electric power generation
Opis:
A 20% decrease in CO2 emission is the principal goal formulated by European Union in the "3x20" package. As a result, development of windfarms, nuclear power plants and even small heat and power generating plants are expected in Poland. Electric power generation in windfarms and in nuclear power plants involves specific problems in the electric grid frequency control. Windfarm power generation requires a support from conventional power plants, when a nuclear power plant requires adequate structure for the control and adjustment purposes. A concept of mathematical model of so-called multi-machine power system, based on representative power plant mathematical models, has been presented in this paper. Such a model of electric grid is suggested for primary and secondary frequency control simulations, as well. The purpose is to investigate the influence of power generation structure on power system frequency control.
Podstawowym celem pakietu „3x20" Unii Europejskiej jest zmniejszenie o 20% emisji dwutlenku węgla. Z tego powodu oczekuje się w Polsce rozwoju energetyki wiatrowej, podobnie jak energetyki jądrowej, a także mini elektrociepłowni. Elektrownie wiatrowe i jądrowe wnoszą specyficzne problemy w regulacji automatycznej częstotliwości systemu elektroenergetycznego. Farmy wiatrowe wymagają pod tym względem wspomagania przez elektrownie konwencjonalne; bloki jądrowe wymagają odpowiedniego dostosowania struktury i nastawień ich układów regulacji automatycznej. Przedstawiono koncepcję wielomaszynowego modelu matematycznego systemu elektroenergetycznego, opartą na modelach matematycznych tzw. reprezentatywnych turbozespołów i bloków. Taki uproszczony model matematyczny jest proponowany do symulacyjnych badań porównawczych regulacji automatycznej częstotliwości systemu elektroenergetycznego. Ich celem jest analiza wpływu struktury wytwarzania energii elektrycznej na regulację automatyczną częstotliwości systemu elektroenergetycznego.
Źródło:
Archiwum Energetyki; 2011, 41, 3-4; 3-14
0066-684X
Pojawia się w:
Archiwum Energetyki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Obieg kogeneracyjny w wodnych kotłach ciepłowniczych
Autorzy:
Ostrowski, Piotr
Pronobis, Marek
Świątkowski, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/986605.pdf
Data publikacji:
2019
Wydawca:
Nowa Energia
Tematy:
kocioł ciepłowniczy
kocioł wodny
kogeneracja
energia elektryczna
wytwarzanie energii elektrycznej
ciepło
wytwarzanie ciepła
heating boiler
water boiler
cogeneration
electricity
electricity generation
heat
heat generation
Opis:
Kogeneracja - wspólne wytwarzanie energii elektrycznej i ciepła przynosi oszczędności w zużyciu paliw pierwotnych. W związku z tym przyczynia się do redukcji emisji szkodliwych substancji do atmosfery (CO2), co również oznacza zmniejszenie kosztów zewnętrznych wytwarzania energii i ciepła. Do tej pory cykle kogeneracyjne nie były stosowane w ciepłowniach wyposażonych w kotły wodne (wodno-rurowe lub płomienicowo-płomieniówkowe). W artykule przedstawiono koncepcję innowacyjnego obiegu kogeneracji, który współpracuje z wodnym kotłem ciepłowniczym lub przemysłowym, a instalacja kogeneracji nie zmienia zatwierdzenia parametrów technicznych kotła i nie ogranicza zakresu jego użytkowania. Przedstawiono opracowane obiegi porównawcze w układach h-s i T-s, pasmowy wykres energii Sankey'a oraz wykresy wybranych wskaźników kogeneracji. Ponadto przedstawiono wskaźniki ekonomiczne kogeneracji dla kotłów wodnych.
Źródło:
Nowa Energia; 2019, 1; 21-28
1899-0886
Pojawia się w:
Nowa Energia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Czy wodór może być magazynem i nośnikiem energii w budownictwie?
Can hydrogen be a storage and carrier of energy in construction?
Autorzy:
Dudek, Magdalena
Powiązania:
https://bibliotekanauki.pl/articles/27314311.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
energia elektryczna
wodór
ogniwo paliwowe
skojarzone wytwarzanie energii elektrycznej i ciepła
metanol
electricity
hydrogen
fuel cell
combined energy and heat production
methanol
Opis:
W artykule scharakteryzowano podstawowe warianty wykorzystania wodoru jako magazynu i nośnika energii, a także ogniw paliwowych w energetyce rozproszonej. Przedstawiono możliwości integracji rozwiązań technologii wodorowych i ogniw paliwowych z odnawialnych źródeł energii w systemach niezależnego zasilania dla budownictwa. Wodór wytwarzany w procesie elektrolizy może być magazynowany w skalowalnych zbiornikach wysokociśnieniowych (200–350 barów) oraz w niskociśnieniowych magazynach wodoru, a następnie wykorzystany do produkcji energii elektrycznej z ogniw paliwowych. Interesującą opcją jest również wykorzystanie alternatywnych paliw (np. metanolu) jako nośników wodoru do budowy pomocniczych układów zasilania w budownictwie. Kolejną ważną cechą rozważanych układów rozproszonych jest możliwość uzyskania wariantowego ciepła, zarówno z ogniw paliwowych, jak i w procesach wodorowych.
The article describes the main options for using hydrogen as an energy storage and carrier, and for using fuel cells in distributed energy. It presents the possibilities of integrating hydrogen and fuel cell technology solutions with renewable energy sources in independent power systems for the building industry. Hydrogen produced by electrolysis can be stored in scalable high-pressure (200–350 bar) and low-pressure hydrogen storage tanks and then used to generate electricity from fuel cells. The use of alternative fuels (e.g. methanol) as hydrogen carriers for auxiliary power systems in building industry is also an interesting option. Another important feature of the distributed systems under consideration is the possibility of recovering and using waste heat, both from fuel cells and hydrogen processes.
Źródło:
Energetyka Rozproszona; 2022, 9; 45--49
2720-0973
Pojawia się w:
Energetyka Rozproszona
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies