Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "opinion analysis" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Customer product review summarization over time for competitive intelligence
Autorzy:
Amarouche, Kamal
Benbrahim, Houda
Kassou, Ismail
Powiązania:
https://bibliotekanauki.pl/articles/950925.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
feature extraction
fuzzy logic
competitive intelligence
opinion mining
opinion summarization
sentiment analysis
SentiWordNet
ekstrakcja cech
logika rozmyta
wywiad konkurencyjny
eksploracja opinii
podsumowanie opinii
analiza nastrojów
Opis:
Nowadays, Customer’s product reviews can be widely found on the Web, be it in personal blogs, forums, or ecommerce websites. They contain important products’ information and therefore became a new data source for competitive intelligence. On that account, these reviews need to be analyzed and summarized in order to help the leader of an entity (company, brand, etc.) to make appropriate decisions in an efective way. However, most previous review summarization studies focus on summarizing sentiment distribution toward different product features without taking into account that the real advantages and disadvantages of a product clarify over time. For this reason, in this work we aim to propose a new system for product opinion summarization which depends on the time when reviews are expressed and that covers the sentiments change about product features. The proposed system firstly, generates a summary based on product features in order to give more accurate and efficient information about different features. secondly, classify the product based on its features in its appropriate class (good, medium or bad product) using a fuzzy logic system. The experimental results demonstrate the effectiveness of the proposed system to generate the real image of a product and its features in reviews.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2018, 12, 4; 70-82
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Aspect-based sentiment classification model employing whale-optimized adaptive neural network
Autorzy:
Balaganesh, Nallathambi
Muneeswaran, K.
Powiązania:
https://bibliotekanauki.pl/articles/2173622.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
aspect-based sentiment analysis
whale optimization algorithm
artificial neural network
opinion mining
analiza nastrojów oparta na aspektach
algorytm optymalizacji wielorybów
sztuczna sieć neuronowa
eksploracja opinii
Opis:
Nowadays in e-commerce applications, aspect-based sentiment analysis has become vital, and every consumer started focusing on various aspects of the product before making the purchasing decision on online portals like Amazon, Walmart, Alibaba, etc. Hence, the enhancement of sentiment classification considering every aspect of products and services is in the limelight. In this proposed research, an aspect-based sentiment classification model has been developed employing sentiment whale-optimized adaptive neural network (SWOANN) for classifying the sentiment for key aspects of products and services. The accuracy of sentiment classification of the product and services has been improved by the optimal selection of weights of neurons in the proposed model. The promising results are obtained by analyzing the mobile phone review dataset when compared with other existing sentiment classification approaches such as support vector machine (SVM) and artificial neural network (ANN). The proposed work uses key features such as the positive opinion score, negative opinion score, and term frequency-inverse document frequency (TF-IDF) for representing each aspect of products and services, which further improves the overall effectiveness of the classifier. The proposed model can be compatible with any sentiment classification problem of products and services.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; art. no. e137271
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Aspect-based sentiment classification model employing whale-optimized adaptive neural network
Autorzy:
Balaganesh, Nallathambi
Muneeswaran, K.
Powiązania:
https://bibliotekanauki.pl/articles/2128172.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
aspect-based sentiment analysis
whale optimization algorithm
artificial neural network
opinion mining
analiza nastrojów oparta na aspektach
algorytm optymalizacji wielorybów
sztuczna sieć neuronowa
eksploracja opinii
Opis:
Nowadays in e-commerce applications, aspect-based sentiment analysis has become vital, and every consumer started focusing on various aspects of the product before making the purchasing decision on online portals like Amazon, Walmart, Alibaba, etc. Hence, the enhancement of sentiment classification considering every aspect of products and services is in the limelight. In this proposed research, an aspect-based sentiment classification model has been developed employing sentiment whale-optimized adaptive neural network (SWOANN) for classifying the sentiment for key aspects of products and services. The accuracy of sentiment classification of the product and services has been improved by the optimal selection of weights of neurons in the proposed model. The promising results are obtained by analyzing the mobile phone review dataset when compared with other existing sentiment classification approaches such as support vector machine (SVM) and artificial neural network (ANN). The proposed work uses key features such as the positive opinion score, negative opinion score, and term frequency-inverse document frequency (TF-IDF) for representing each aspect of products and services, which further improves the overall effectiveness of the classifier. The proposed model can be compatible with any sentiment classification problem of products and services.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; e137271, 1--8
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies