- Tytuł:
- On odd and semi-odd linear partitions of cubic graphs
- Autorzy:
-
Fouquet, Jean-Luc
Thuillier, Henri
Vanherpe, Jean-Marie
Wojda, Adam - Powiązania:
- https://bibliotekanauki.pl/articles/743181.pdf
- Data publikacji:
- 2009
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
Cubic graph
linear arboricity
strong matching
edge-colouring - Opis:
-
A linear forest is a graph whose connected components are chordless paths. A linear partition of a graph G is a partition of its edge set into linear forests and la(G) is the minimum number of linear forests in a linear partition.
In this paper we consider linear partitions of cubic simple graphs for which it is well known that la(G) = 2. A linear partition $L = (L_B,L_R)$ is said to be odd whenever each path of $L_B ∪ L_R$ has odd length and semi-odd whenever each path of $L_B$ (or each path of $L_R$) has odd length.
In [2] Aldred and Wormald showed that a cubic graph G is 3-edge colourable if and only if G has an odd linear partition. We give here more precise results and we study moreover relationships between semi-odd linear partitions and perfect matchings. - Źródło:
-
Discussiones Mathematicae Graph Theory; 2009, 29, 2; 275-292
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki