Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "coloring" wg kryterium: Temat


Wyświetlanie 1-11 z 11
Tytuł:
Facial [r,s,t]-Colorings of Plane Graphs
Autorzy:
Czap, Július
Šugerek, Peter
Jendrol’, Stanislav
Valiska, Juraj
Powiązania:
https://bibliotekanauki.pl/articles/31343366.pdf
Data publikacji:
2019-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
plane graph
boundary walk
edge-coloring
vertex-coloring
total-coloring
Opis:
Let $G$ be a plane graph. Two edges are facially adjacent in $G$ if they are consecutive edges on the boundary walk of a face of $G$. Given nonnegative integers $r$, $s$, and $t$, a facial $[r, s, t]$-coloring of a plane graph $G = (V,E)$ is a mapping $f : V \cup E \rightarrow {1, . . ., k} $ such that $ |f(v_1) − f(v_2)| \ge r $ for every two adjacent vertices $ v_1 $ and $ v_2 $, $ | f(e_1) − f(e_2)| \ge s $ for every two facially adjacent edges $ e_1 $ and $ e_2 $, and $ | f(v) − f(e)| \ge t $ for all pairs of incident vertices $ v $ and edges $ e $. The facial $[r, s, t]$-chromatic number $ \overline{ \chi }_{r,s,t} (G) $ of $ G $ is defined to be the minimum $k$ such that $G$ admits a facial $[r, s, t]$-coloring with colors $1, . . ., k$. In this paper we show that $ \overline{ \chi }_{r,s,t} (G) \le 3r + 3s + t + 1 $ for every plane graph $G$. For some triplets $ [r, s, t] $ and for some families of plane graphs this bound is improved. Special attention is devoted to the cases when the parameters $r$, $s$, and $t$ are small.
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 3; 629-645
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Three edge-coloring conjectures
Autorzy:
Schelp, Richard
Powiązania:
https://bibliotekanauki.pl/articles/743559.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
edge-coloring
Ramsey number
vertex-distinguishing edge-coloring
strong chromatic index
balanced edge-coloring
local coloring
mean coloring
Opis:
The focus of this article is on three of the author's open conjectures. The article itself surveys results relating to the conjectures and shows where the conjectures are known to hold.
Źródło:
Discussiones Mathematicae Graph Theory; 2002, 22, 1; 173-182
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Maximum Edge-Colorings Of Graphs
Autorzy:
Jendrol’, Stanislav
Vrbjarová, Michaela
Powiązania:
https://bibliotekanauki.pl/articles/31341153.pdf
Data publikacji:
2016-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
edge-coloring
r -maximum k -edge-coloring
unique-maximum edge-coloring
weak-odd edge-coloring
weak-even edge-coloring
Opis:
An $r$-maximum $k$-edge-coloring of $G$ is a $k$-edge-coloring of $G$ having a property that for every vertex $v$ of degree $d_G(v) = d, d \ge r$, the maximum color, that is present at vertex $v$, occurs at $v$ exactly $r$ times. The $r$-maximum index $ \chi_r^′ (G) $ is defined to be the minimum number $k$ of colors needed for an $r$-maximum $k$-edge-coloring of graph $G$. In this paper we show that $ \chi_r^′ (G) \le 3 $ for any nontrivial connected graph $G$ and $ r = 1$ or 2. The bound 3 is tight. All graphs $G$ with $ \chi_1^' (G) =i $, $i = 1, 2, 3$ are characterized. The precise value of the $r$-maximum index, $ r \ge 1 $, is determined for trees and complete graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 1; 117-125
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Almost-Rainbow Edge-Colorings of Some Small Subgraphs
Autorzy:
Krop, Elliot
Krop, Irina
Powiązania:
https://bibliotekanauki.pl/articles/30097998.pdf
Data publikacji:
2013-09-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Ramsey theory
generalized Ramsey theory
rainbow-coloring
edge-coloring
Erdös problem
Opis:
Let $ f(n, p, q) $ be the minimum number of colors necessary to color the edges of $ K_n $ so that every $ K_p $ is at least $ q $-colored. We improve current bounds on these nearly “anti-Ramsey” numbers, first studied by Erdös and Gyárfás. We show that $ f(n, 5, 0) \ge \frac{7}{4} n - 3 $, slightly improving the bound of Axenovich. We make small improvements on bounds of Erdös and Gyárfás by showing $ \frac{5}{6} n + 1 \leq f(n,4,5) $ and for all even $ n ≢ 1(\text{mod } 3) $, $ f(n, 4, 5) \leq n−1 $. For a complete bipartite graph $ G= K_{n,n}$, we show an $n$-color construction to color the edges of $ G $ so that every $ C_4 ⊆ G $ is colored by at least three colors. This improves the best known upper bound of Axenovich, Füredi, and Mubayi.
Źródło:
Discussiones Mathematicae Graph Theory; 2013, 33, 4; 771-784
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Facial rainbow edge-coloring of simple 3-connected plane graphs
Autorzy:
Czap, Julius
Powiązania:
https://bibliotekanauki.pl/articles/255771.pdf
Data publikacji:
2020
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
plane graph
facial path
edge-coloring
Opis:
A facial rainbow edge-coloring of a plane graph G is an edge-coloring such that any two edges receive distinct colors if they lie on a common facial path of G. The minimum number of colors used in such a coloring is denoted by erb(G). Trivially, erb(G) ≥ L(G) + 1 holds for every plane graph without cut-vertices, where L(G) denotes the length of a longest facial path in G. Jendrol’ in 2018 proved that every simple 3-connected plane graph admits a facial rainbow edge-coloring with at most L(G) + 2 colors, moreover, this bound is tight for L(G) = 3. He also proved that erb(G) = L(G) + 1 for L(G) ∉ {3,4, 5}. He posed the following conjecture: There is a simple 3-connected plane graph G with L(G) = 4 and erb(G) = L(G) + 2. In this note we answer the conjecture in the affirmative. Keywords: plane graph, facial path, edge-coloring.
Źródło:
Opuscula Mathematica; 2020, 40, 4; 475-482
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Adjacent vertex distinguishing edge-colorings of planar graphs with girth at least six
Autorzy:
Bu, Yuehua
Lih, Ko-Wei
Wang, Weifan
Powiązania:
https://bibliotekanauki.pl/articles/743930.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
edge-coloring
vertex-distinguishing
planar graph
Opis:
An adjacent vertex distinguishing edge-coloring of a graph G is a proper edge-coloring o G such that any pair of adjacent vertices are incident to distinct sets of colors. The minimum number of colors required for an adjacent vertex distinguishing edge-coloring of G is denoted by χ'ₐ(G). We prove that χ'ₐ(G) is at most the maximum degree plus 2 if G is a planar graph without isolated edges whose girth is at least 6. This gives new evidence to a conjecture proposed in [Z. Zhang, L. Liu, and J. Wang, Adjacent strong edge coloring of graphs, Appl. Math. Lett., 15 (2002) 623-626.]
Źródło:
Discussiones Mathematicae Graph Theory; 2011, 31, 3; 429-439
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Kaleidoscopic Edge-Coloring of Complete Graphs and r-Regular Graphs
Autorzy:
Li, Xueliang
Zhu, Xiaoyu
Powiązania:
https://bibliotekanauki.pl/articles/31343197.pdf
Data publikacji:
2019-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
k -kaleidoscope
regular graph
edge-coloring
Opis:
For an $r$-regular graph $G$, we define an edge-coloring $c$ with colors from ${1, 2, . . ., k}$, in such a way that any vertex of $G$ is incident with at least one edge of each color. The multiset-color $c_m(v)$ of a vertex $v$ is defined as the ordered tuple $ (a_1, a_2, . . ., a_k) $, where $ a_i (1 \le i \le k) $ denotes the number of edges of color $i$ which are incident with $v$ in $G$. Then this edge-coloring $c$ is called a $k$-kaleidoscopic coloring of $G$ if every two distinct vertices in $G$ have different multiset-colors and in this way the graph $G$ is defined as a $k$-kaleidoscope. In this paper, we determine the integer $k$ for a complete graph $ K_n $ to be a $k$-kaleidoscope, and hence solve a conjecture in [P. Zhang, A Kaleidoscopic View of Graph Colorings, (Springer Briefs in Math., New York, 2016)] that for any integers $n$ and $k$ with $ n \ge k + 3 \ge 6 $, the complete graph $ K_n$ is a $k$-kaleidoscope. Then, we construct an $r$-regular 3-kaleidoscope of order \( \binom{r-1}{2} - 1 \) for each integer $ r \ge 7 $, where $ r \equiv 3 (mod 4) $, which solves another conjecture in [P. Zhang, A Kaleidoscopic View of Graph Colorings, (Springer Briefs in Math., New York, 2016)] on the maximum order of $r$-regular 3-kaleidoscopes.
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 4; 881-888
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rainbow Connection Number of Graphs with Diameter 3
Autorzy:
Li, Hengzhe
Li, Xueliang
Sun, Yuefang
Powiązania:
https://bibliotekanauki.pl/articles/31342160.pdf
Data publikacji:
2017-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
edge-coloring
rainbow path
rainbow connection number
diameter
Opis:
A path in an edge-colored graph G is rainbow if no two edges of the path are colored the same. The rainbow connection number rc(G) of G is the smallest integer k for which there exists a k-edge-coloring of G such that every pair of distinct vertices of G is connected by a rainbow path. Let f(d) denote the minimum number such that rc(G) ≤ f(d) for each bridgeless graph G with diameter d. In this paper, we shall show that 7 ≤ f(3) ≤ 9.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 1; 141-154
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
More on the Rainbow Disconnection in Graphs
Autorzy:
Bai, Xuqing
Chang, Renying
Huang, Zhong
Li, Xueliang
Powiązania:
https://bibliotekanauki.pl/articles/32222544.pdf
Data publikacji:
2022-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
edge-coloring
edge-connectivity
rainbow disconnection coloring (number)
Erdős-Gallai type problem
Nordhaus-Gaddum type bounds
complexity
NP-hard (complete)
Opis:
Let G be a nontrivial edge-colored connected graph. An edge-cut R of G is called a rainbow-cut if no two of its edges are colored the same. An edge-colored graph G is rainbow disconnected if for every two vertices u and v of G, there exists a u-v-rainbow-cut separating them. For a connected graph G, the rainbow disconnection number of G, denoted by rd(G), is defined as the smallest number of colors that are needed in order to make G rainbow disconnected. In this paper, we first determine the maximum size of a connected graph G of order n with rd(G) = k for any given integers k and n with 1 ≤ k ≤ n − 1, which solves a conjecture posed only for n odd in [G. Chartrand, S. Devereaux, T.W. Haynes, S.T. Hedetniemi and P. Zhang, Rainbow disconnection in graphs, Discuss. Math. Graph Theory 38 (2018) 1007–1021]. From this result and a result in their paper, we obtain Erdős-Gallai type results for rd(G). Secondly, we discuss bounds on rd(G) for complete multipartite graphs, critical graphs with respect to the chromatic number, minimal graphs with respect to the chromatic index, and regular graphs, and we also give the values of rd(G) for several special graphs. Thirdly, we get Nordhaus-Gaddum type bounds for rd(G), and examples are given to show that the upper and lower bounds are sharp. Finally, we show that for a connected graph G, to compute rd(G) is NP-hard. In particular, we show that it is already NP-complete to decide if rd(G) = 3 for a connected cubic graph. Moreover, we show that for a given edge-colored (with an unbounded number of colors) connected graph G it is NP-complete to decide whether G is rainbow disconnected.
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 4; 1185-1204
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Conflict-Free Connections of Graphs
Autorzy:
Czap, Július
Jendroľ, Stanislav
Valiska, Juraj
Powiązania:
https://bibliotekanauki.pl/articles/31342254.pdf
Data publikacji:
2018-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
edge-coloring
conflict-free connection
2-edge-connected graph
tree
Opis:
An edge-colored graph G is conflict-free connected if any two of its vertices are connected by a path, which contains a color used on exactly one of its edges. In this paper the question for the smallest number of colors needed for a coloring of edges of G in order to make it conflict-free connected is investigated. We show that the answer is easy for 2-edge-connected graphs and very difficult for other connected graphs, including trees.
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 4; 911-920
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Spanning trees with many or few colors in edge-colored graphs
Autorzy:
Broersma, Hajo
Li, Xueliang
Powiązania:
https://bibliotekanauki.pl/articles/971955.pdf
Data publikacji:
1997
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
edge-coloring
spanning tree
matroid (intersection)
complexity
NP-complete
NP-hard
polynomial algorithm
(minimum) dominating set
Opis:
Given a graph G = (V,E) and a (not necessarily proper) edge-coloring of G, we consider the complexity of finding a spanning tree of G with as many different colors as possible, and of finding one with as few different colors as possible. We show that the first problem is equivalent to finding a common independent set of maximum cardinality in two matroids, implying that there is a polynomial algorithm. We use the minimum dominating set problem to show that the second problem is NP-hard.
Źródło:
Discussiones Mathematicae Graph Theory; 1997, 17, 2; 259-269
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-11 z 11

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies