Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "discretization method" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Approximate relaxed descent method for optimal control problems
Autorzy:
Chryssoverghi, I.
Coletsos, J.
Kokkinis, B.
Powiązania:
https://bibliotekanauki.pl/articles/206679.pdf
Data publikacji:
2001
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
dyskretyzacja
kontrola relaksacyjna
sterowanie optymalne
descent method
discretization
optimal control
relaxed controls
Opis:
We consider an optimal control problem for systems governed by ordinary differential equations with control constraints. Since no convexity assumptions are made on the data, the problem is reformulated in relaxed form. The relaxed state equation is discretized by the implicit trapezoidal scheme and the relaxed controls are approximated by piecewise constant relaxed controls. We then propose a combined descent and discretization method that generates sequences of discrete relaxed controls and progressively refines the discretization. Since here the adjoint of the discrete state equation is not defined, we use, at each iteration, an approximate derivative of the cost functional defined by discretizing the continuous adjoint equation and the integral involved by appropriate trapezoidal schemes. It is proved that accumulation points of sequences constructed by this method satisfy the strong relaxed necessary conditions for optimality for the continuous problem. Finally, the computed relaxed controls can be easily approximated by piecewise constant classical controls.
Źródło:
Control and Cybernetics; 2001, 30, 4; 385-404
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Approximate gradient projection method with general Runge-Kutta schemes and piecewise polynomial controls for optimal control problems
Autorzy:
Chryssoverghi, I.
Powiązania:
https://bibliotekanauki.pl/articles/970094.pdf
Data publikacji:
2005
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
dyskretyzacja
sterowanie optymalne
optimal control
gradient projection method
discretization
non-matching Runge-Kutta schemes
piecewise polynomial controls
Opis:
This paper addresses the numerical solution of optimal control problems for systems described by ordinary differential equations with control constraints. The state equation is discretized by a general explicit Runge-Kutta scheme and the controls are approximated by functions that are piecewise polynomial, but not necessarily continuous. We then propose an approximate gradient projection method that constructs sequences of discrete controls and progressively refines the discretization. Instead of using the exact discrete cost derivative, which usually requires tedious calculations, we use here an approximate derivative of the cost functional denned by discretizing the continuous adjoint equation by the same Runge-Kutta scheme backward and the integral involved by a Newton-Cotes integration rule, both involving maximal order intermediate approximations. The main result is that strong accumulation points in L2, if they exist, of sequences generated by this method satisfy the weak necessary conditions for optimality for the continuous problem. In the unconstrained case and under additional assumptions, we prove strong convergence in L2 and derive an a posteriori error estimate. Finally, numerical examples are given.
Źródło:
Control and Cybernetics; 2005, 34, 2; 425-451
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Improving the stability of discretization zeros with the Taylor method using a generalization of the fractional-order hold
Autorzy:
Zeng, C.
Liang, S.
Zhang, Y.
Zhong, J.
Su, Y.
Powiązania:
https://bibliotekanauki.pl/articles/330136.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
stability
discretization zeros
Taylor method
signal reconstruction
sampled data model
stabilność
dyskretyzacja
metoda Taylora
rekonstrukcja sygnału
model danych
Opis:
Remarkable improvements in the stability properties of discrete system zeros may be achieved by using a new design of the fractional-order hold (FROH) circuit. This paper first analyzes asymptotic behaviors of the limiting zeros, as the sampling period T tends to zero, of the sampled-data models on the basis of the normal form representation for continuous-time systems with a new hold proposed. Further, we also give the approximate expression of limiting zeros of the resulting sampled-data system as power series with respect to a sampling period up to the third order term when the relative degree of the continuous-time system is equal to three, and the corresponding stability of the discretization zeros is discussed for fast sampling rates. Of particular interest are the stability conditions of sampling zeros in the case of a new FROH even though the relative degree of a continuous-time system is greater than two, whereas the conventional FROH fails to do so. An insightful interpretation of the obtained sampled-data model can be made in terms of minimal intersample ripple by design, where multirate sampled systems have a poor intersample behavior. Our results provide a more accurate approximation for asymptotic zeros, and certain known results on asymptotic behavior of limiting zeros are shown to be particular cases of the ideas presented here.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2014, 24, 4; 745-757
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies