Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "prior model" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Estymowane modele równowagi ogólnej i autoregresja wektorowa. Aspekty teoretyczne
An Estimated General Equilibrium Model and Vector Autoregression. Theoretical Aspects
Autorzy:
Wróbel-Rotter, Renata
Powiązania:
https://bibliotekanauki.pl/articles/422792.pdf
Data publikacji:
2013
Wydawca:
Główny Urząd Statystyczny
Tematy:
DSGE-VAR
dynamiczny stochastyczny model równowagi ogólnej
wnioskowanie bayesowskie
specyfikacja rozkładu a priori
dynamic stochastic general equilibrium model
Bayesian inference
prior specification
Opis:
Model DSGE-VAR składa się z dwóch modeli autoregresji wektorowej: pierwszy z nich, pomocniczy, jest aproksymacją estymowanego modelu równowagi ogólnej, zapisanego w formie reprezentacji w przestrzeni stanów, i służy konstrukcji rozkładu a priori dla drugiego, szacowanego dla danych obserwowanych. Łączne wnioskowanie o parametrach modelu strukturalnego i autoregresyjnego jest możliwe po zbudowaniu odpowiednich rozkładów prawdopodobieństwa, stanowiących podstawę metod bayesowskich. Kluczową rolę pełni parametr wagowy, ustalający optymalne proporcje obydwu podejść i mający zasadnicze znaczenie dla oszacowania brzegowej gęstości obserwacji, stanowiącej podstawę do porównań mocy wyjaśniającej modeli. Artykuł stanowi syntezę informacji teoretycznych związanych z metodologią DSGE-VAR, i może być traktowany jako etap wstępny i wprowadzający w badania empiryczne.
The DSGE-VAR model consists of two models of vector autoregressions: the first one approximates linearised solution of the dynamic stochastic general equilibrium model and is used as a tool for construction of a prior distribution for the second one, estimated with the observed data. Combined inference is possible on the basis on probability distributions with the Bayesian techniques. The key role in the hybrid model is played by the weighting parameter that defines the relative proportions of the structural and autoregressive models. It has crucial impact for the marginal data density that allows to compare the power of different models. The main purpose of the paper is to present in details model assumptions and estimation.
Źródło:
Przegląd Statystyczny; 2013, 60, 3; 359-380
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estymowane modele równowagi ogólnej i autoregresja wektorowa. Aspekty praktyczne
An Estimated General Equilibrium Model and Vector Autoregression. Practical Issues
Autorzy:
Wróbel-Rotter, Renata
Powiązania:
https://bibliotekanauki.pl/articles/423053.pdf
Data publikacji:
2013
Wydawca:
Główny Urząd Statystyczny
Tematy:
DSGE-VAR
dynamiczny stochastyczny model równowagi ogólnej
wnioskowanie bayesowskie
brzegowa gęstość obserwacji
specyfikacja rozkładu a priori
zbieżność MCMC
dynamic stochastic general equilibrium model
Bayesian inference
marginal data density
prior specification
convergence diagnostics of MCMC
Opis:
Model DSGE-VAR składa się z dwóch modeli wektorowej autoregresji: pierwszy z nich jest aproksymacją liniowego rozwiązania estymowanego modelu równowagi ogólnej i służy konstrukcji rozkładu a priori dla drugiego, szacowanego dla danych obserwowanych. Opracowanie jest poświęcone szczegółowemu omówieniu aspektów praktycznych, zawiązanych z modelami DSGE-VAR. Główny nacisk został położony na zagadnienia specyfikacji a priori dla parametru wagowego: rozpatrzono szereg modeli warunkowych oraz modele z estymowanym parametrem wagowym, po przyjęciu alternatywnych rozkładów a priori: jednostajnego, przesuniętego gamma i zmodyfikowanego rozkładu beta. Oszacowanie szeregu modeli warunkowych pozwala na ujawnienie znacznej zmienności logarytmu brzegowej gęstości obserwacji implikujących wrażliwość czynników Bayesa, istotnie zmieniających się w odpowiedzi na niewielkie zmiany specyfikacji rozkładu a priori dla parametru wagowego. Estymacja modelu pełnego pozwala na optymalne ustalenie rzędu opóźnienia wektorowej autoregresji oraz sprawdzenie wrażliwości wnioskowania a posteriori o parametrze wagowym w zależności od typu i rozproszenia rozkładu a priori. W drugiej części opracowania omówiono sposoby oceny stabilności numerycznej w modelach DSGE-VAR.
The DSGE-VAR model consists of two models of vector autoregressions: the first one approximates the linearised solution of the dynamic stochastic general equilibrium model and is used as a tool for construction of a prior distribution for the second one, estimated with the observed data. The main purpose of the paper is to present practical aspects of DSGE-VAR estimation, verification and comparison, based on the marginal data density. It can be obtained after considering conditional models or by estimation of fully specified models, after assuming uniform, generalised gamma and modified beta distributions. The conditional models lead to serious variability of the Bayes factors that has little economic interpretation. Posterior inference for the weighting parameter from fully estimated models is less sensitive to its prior specification. In the second part of the paper author discusses convergence diagnostics used for checking stability of MCMC algorithms.
Źródło:
Przegląd Statystyczny; 2013, 60, 4; 477-498
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies