Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "repetitive control" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
A Performance Study on Synchronous and Asynchronous Update Rules for A Plug-In Direct Particle Swarm Repetitive Controller
Autorzy:
Ufnalski, B.
Grzesiak, L. M.
Powiązania:
https://bibliotekanauki.pl/articles/141272.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
repetitive process control
particle swarm optimization (PSO)
synchronous and asynchronous update rules
dynamic optimization problem
repetitive disturbance rejection
optimal control
Opis:
In this paper two different update schemes for the recently developed plug-in direct particle swarm repetitive controller (PDPSRC) are investigated and compared. The proposed approach employs the particle swarm optimizer (PSO) to solve in on-line mode a dynamic optimization problem (DOP) related to the control task in the constant-amplitude constant-frequency voltage-source inverter (CACF VSI) with an LC output filter. The effectiveness of synchronous and asynchronous update rules, both commonly used in static optimization problems (SOPs), is assessed and compared in the case of PDPSRC. The performance of the controller, when synthesized using each of the update schemes, is studied numerically.
Źródło:
Archives of Electrical Engineering; 2014, 63, 4; 635-646
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Repetitive neurocontroller with disturbance feedforward path active in the pass-to-pass direction for a VSI inverter with an output LC filter
Autorzy:
Ufnalski, B.
Grzesiak, L. M.
Powiązania:
https://bibliotekanauki.pl/articles/200017.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
repetitive control
feedforward neural network
dynamic optimization problem
repetitive disturbance rejection
voltage source inverter
disturbance dual feedforward path
sterowanie powtarzalne
sieci neuronowe
problem optymalizacji dynamicznej
przetwornica napięcia
odrzucanie zakłóceń
Opis:
An enhancement to the previously developed repetitive neurocontroller (RNC) is discussed and investigated in the paper. Originally, the time-base generator (TBG) has been used to produce the only input signal for the neural approximator. The resulting search space makes the dynamic optimization problem (DOP) of shaping the control signal solvable with the help of a function approximator such as the feed-forward neural network (FFNN). The plant under consideration, i.e. a constant-amplitude constant-frequency voltage-source inverter (CACF VSI) with an output LC filter, is assumed to be equipped with the disturbance load current sensor to enable implementation of the disturbance feed-forward (pDFF) path as a part of the non-repetitive subsystem acting in the along the pass p-direction. An investigation has been undertaken to explore potential benefits of using this signal also as an additional input for the RNC to augment the approximation space and potentially enhance the convergence rate of the real-time search process. It is numerically demonstrated in the paper that the disturbance feed-forward path active in the pass-to-pass k-direction (kDFF) improves the dynamics of the repetitive part as well indeed.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2016, 64, 1; 115-125
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Plug-in direct particle swarm repetitive controller with a reduced dimensionality of a fitness landscape – a multi-swarm approach
Autorzy:
Ufnalski, B.
Grzesiak, L. M.
Powiązania:
https://bibliotekanauki.pl/articles/202046.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
repetitive process control
dynamic optimization problem
particle swarm optimizer
repetitive disturbance rejection
noninteracting subswarms
dimension-reduced fitness functional
powtarzalne sterowanie procesem
problem optymalizacji dynamicznej
optymalizator rojem cząstek
odrzucanie zakłóceń
sprawność funkcjonalna
Opis:
The paper describes a modification to the recently developed plug-in direct particle swarm repetitive controller (PDPSRC) for the sine-wave constant-amplitude constant-frequency (CACF) voltage-source inverter (VSI). The original PDPSRC algorithm assumes that the particle swarm optimizer (PSO) takes into account a performance index defined over the whole reference signal period. Each particle stores all the samples of the control signal, e.g. α = 200 samples for a controller working at 10 kHz and the reference frequency equal to 50 Hz. Therefore, the fitness landscape (i.e. the performance index) is -dimensional ( D), which makes optimization challenging. That solution can be categorized as the single-swarm one. It has been previously shown that the swarm controller does not suffer from long-term stability issues encountered in the classic iterative learning controllers (ILC). However, the convergence of the swarm has to be kept at a relatively low rate to enable successful exploitation in the D search space, which in turn results in slow responsiveness of the PDPSRC. Here a multi-swarm approach is proposed in which we divide a dynamic optimization problem (DOP) among less dimensional swarms. The reference signal period is segmented into shorter intervals and the control signal is optimized in each interval independently by separate swarms. The effectiveness of the proposed approach is illustrated with the help of numerical experiments on the CACF VSI with an output LC filter operating under nonlinear loads.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2015, 63, 4; 857-866
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies