Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "big data analysis" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Applications of rough sets in big data analysis: An overview
Autorzy:
Pięta, Piotr
Szmuc, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/2055175.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
rough sets theory
big data analysis
deep learning
data mining
teoria zbiorów przybliżonych
duży zbiór danych
uczenie głębokie
eksploracja danych
Opis:
Big data, artificial intelligence and the Internet of things (IoT) are still very popular areas in current research and industrial applications. Processing massive amounts of data generated by the IoT and stored in distributed space is not a straightforward task and may cause many problems. During the last few decades, scientists have proposed many interesting approaches to extract information and discover knowledge from data collected in database systems or other sources. We observe a permanent development of machine learning algorithms that support each phase of the data mining process, ensuring achievement of better results than before. Rough set theory (RST) delivers a formal insight into information, knowledge, data reduction, uncertainty, and missing values. This formalism, formulated in the 1980s and developed by several researches, can serve as a theoretical basis and practical background for dealing with ambiguities, data reduction, building ontologies, etc. Moreover, as a mature theory, it has evolved into numerous extensions and has been transformed through various incarnations, which have enriched expressiveness and applicability of the related tools. The main aim of this article is to present an overview of selected applications of RST in big data analysis and processing. Thousands of publications on rough sets have been contributed; therefore, we focus on papers published in the last few years. The applications of RST are considered from two main perspectives: direct use of the RST concepts and tools, and jointly with other approaches, i.e., fuzzy sets, probabilistic concepts, and deep learning. The latter hybrid idea seems to be very promising for developing new methods and related tools as well as extensions of the application area.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 4; 659--683
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An effective data reduction model for machine emergency state detection from big data tree topology structures
Autorzy:
Iaremko, Iaroslav
Senkerik, Roman
Jasek, Roman
Lukastik, Petr
Powiązania:
https://bibliotekanauki.pl/articles/2055178.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
OPC UA
OPC tree
principal component analysis
PCA
big data analysis
data reduction
machine tool
anomaly detection
emergency states
analiza głównych składowych
duży zbiór danych
redukcja danych
wykrywanie anomalii
stan nadzwyczajny
Opis:
This work presents an original model for detecting machine tool anomalies and emergency states through operation data processing. The paper is focused on an elastic hierarchical system for effective data reduction and classification, which encompasses several modules. Firstly, principal component analysis (PCA) is used to perform data reduction of many input signals from big data tree topology structures into two signals representing all of them. Then the technique for segmentation of operating machine data based on dynamic time distortion and hierarchical clustering is used to calculate signal accident characteristics using classifiers such as the maximum level change, a signal trend, the variance of residuals, and others. Data segmentation and analysis techniques enable effective and robust detection of operating machine tool anomalies and emergency states due to almost real-time data collection from strategically placed sensors and results collected from previous production cycles. The emergency state detection model described in this paper could be beneficial for improving the production process, increasing production efficiency by detecting and minimizing machine tool error conditions, as well as improving product quality and overall equipment productivity. The proposed model was tested on H-630 and H-50 machine tools in a real production environment of the Tajmac-ZPS company.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 4; 601--611
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies