Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "przewidywania" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Bankruptcy models : verifying their validity as a predictor of corporate failure
Modele upadłości : weryfikowanie ich ważności jako czynnik prognostyczny niepowodzenia korporacyjnego
Autorzy:
Kovacova, M.
Kliestik, T.
Kubala, P.
Valaskova, K.
Radišić, M.
Borocki, J.
Powiązania:
https://bibliotekanauki.pl/articles/406179.pdf
Data publikacji:
2018
Wydawca:
Politechnika Częstochowska
Tematy:
bankruptcy
company
prediction accuracy
upadłość
przedsiębiorstwo
dokładność przewidywania
Opis:
Although the issue of corporate failure analysis is a hot topic for business research since the last century, even nowadays there are numerous researches focusing on assessing the financial health of companies. Within increasing internationalization and globalization the demand for bankruptcy prediction is important not only for owners of the companies, but also for other interested groups. We aim to test the validity of prediction models developed as partial results of our research project. Bankruptcy prediction models were constructed on the data set of Slovak companies covering the year 2015 and based on the various statistical methodologies. We provided the validity of these models and their prediction accuracy on the data set of Slovak companies covering the following year 2016.
Chociaż kwestia analizy niepowodzenia korporacyjnego jest gorącym tematem badań biznesowych od zeszłego wieku, nawet obecnie prowadzone są liczne badania skupiające się na ocenie kondycji finansowej firm. W warunkach rosnącej internacjonalizacji i globalizacji zapotrzebowanie na prognozy bankructwa jest ważne nie tylko dla właścicieli firm, ale także dla innych zainteresowanych grup. Celem artykułu jest sprawdzenie ważności modeli prognostycznych opracowanych jako częściowe wyniki projektu badawczego przez autorów. Modele przewidywania bankructwa zostały zbudowane na zbiorze danych słowackich firm w roku 2015 na podstawie różnych metodologii statystycznych. Zapewniona została poprawność tych modeli i dokładność ich prognozowania na zbiorze danych słowackich firm obejmująca rok 2016.
Źródło:
Polish Journal of Management Studies; 2018, 18, 1; 167-179
2081-7452
Pojawia się w:
Polish Journal of Management Studies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Boosting-based model for solving Sm-Co alloy’s maximum energy product prediction task
Autorzy:
Trostianchyn, A.M.
Izonin, I.V.
Duriagina, Z.A.
Tkachenko, R.O.
Kulyk, V.V.
Havrysh, B.M.
Powiązania:
https://bibliotekanauki.pl/articles/24200577.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
Sm-Co alloy
ensemble learning
gradient boosting
prediction accuracy
Stop Sm-Co
uczenie zespołowe
dokładność przewidywania
Opis:
Purpose: This paper aims to decide the Sm-Co alloy’s maximum energy product prediction task based on the boosting strategy of the ensemble of machine learning methods. Design/methodology/approach: This paper examines an ensemble-based approach to solving Sm-Co alloy’s maximum energy product prediction task. Because classical machine learning methods sometimes do not supply acceptable precision when solving the regression problem, the authors investigated the boosting ML model, namely Gradient Boosting. Building a boosting model based on several weak submodels, each of which considers the errors of the prior ones, provides substantial growth in the accuracy of the problem-solving. The obtained result is confirmed using an actual data set collected by the authors. Findings: This work demonstrates the high efficiency of applying the ensemble strategy of machine learning to the applied problem of materials science. The experiments determined the highest accuracy of solving the forecast task for the maximum energy product of Sm-Co alloy formed on the boosting model of machine learning in comparison with classical methods of machine learning. Research limitations/implications: The boosting strategy of machine learning, in comparison with single algorithms of machine learning, requires much more computational and time resources to implement the learning process of the model. Practical implications: This work demonstrated the possibility of effectively solving Sm-Co alloy’s maximum energy product prediction task using machine learning. The studied boosting model of machine learning for solving the problem provides high accuracy of prediction, which reveals several advantages of their use in solving issues applied to computational material science. Furthermore, using the Orange modelling environment provides a simple and intuitive interface for using the researched methods. The proposed approach to the forecast significantly reduces the time and resource costs associated with studying expensive rare earth metals (REM)-based ferromagnetic materials. value: The authors have collected and formed a set of data on predicting the maximum energy product of the Sm-Co alloy. We used machine learning tools to solve the task. As a result, the most increased forecasting precision based on the boosting model is demonstrated compared to classical machine learning methods.
Źródło:
Archives of Materials Science and Engineering; 2022, 116, 2; 71--80
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Execution time prediction model for parallel GPU realizations of discrete transforms computation algorithms
Autorzy:
Puchala, Dariusz
Stokfiszewski, Kamil
Wieloch, Kamil
Powiązania:
https://bibliotekanauki.pl/articles/2173636.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
graphics processing unit
GPU
execution time prediction model
discrete wavelet transform
DWT
lattice structure
convolution-based approach
orthogonal transform
orthogonal filter banks
time effectiveness
prediction accuracy
procesor graficzny
model przewidywania czasu wykonania
dyskretna transformata falkowa
struktura sieciowa
podejście oparte na splotach
przekształcenia ortogonalne
ortogonalne banki filtrów
efektywność czasowa
dokładność przewidywania
Opis:
Parallel realizations of discrete transforms (DTs) computation algorithms (DTCAs) performed on graphics processing units (GPUs) play a significant role in many modern data processing methods utilized in numerous areas of human activity. In this paper the authors propose a novel execution time prediction model, which allows for accurate and rapid estimation of execution times of various kinds of structurally different DTCAs performed on GPUs of distinct architectures, without the necessity of conducting the actual experiments on physical hardware. The model can serve as a guide for the system analyst in making the optimal choice of the GPU hardware solution for a given computational task involving particular DT calculation, or can help in choosing the best appropriate parallel implementation of the selected DT, given the limitations imposed by available hardware. Restricting the model to exhaustively adhere only to the key common features of DTCAs enables the authors to significantly simplify its structure, leading consequently to its design as a hybrid, analytically–simulational method, exploiting jointly the main advantages of both of the mentioned techniques, namely: time-effectiveness and high prediction accuracy, while, at the same time, causing mutual elimination of the major weaknesses of both of the specified approaches within the proposed solution. The model is validated experimentally on two structurally different parallel methods of discrete wavelet transform (DWT) computation, i.e. the direct convolutionbased and lattice structure-based schemes, by comparing its prediction results with the actual measurements taken for 6 different graphics cards, representing a fairly broad spectrum of GPUs compute architectures. Experimental results reveal the overall average execution time and prediction accuracy of the model to be at a level of 97.2%, with global maximum prediction error of 14.5%, recorded throughout all the conducted experiments, maintaining at the same time high average evaluation speed of 3.5 ms for single simulation duration. The results facilitate inferring the model generality and possibility of extrapolation to other DTCAs and different GPU architectures, which along with the proposed model straightforwardness, time-effectiveness and ease of practical application, makes it, in the authors’ opinion, a very interesting alternative to the related existing solutions.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 1; art. no. e139393
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Execution time prediction model for parallel GPU realizations of discrete transforms computation algorithms
Autorzy:
Puchala, Dariusz
Stokfiszewski, Kamil
Wieloch, Kamil
Powiązania:
https://bibliotekanauki.pl/articles/2173537.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
graphics processing unit
GPU
execution time prediction model
discrete wavelet transform
DWT
lattice structure
convolution-based approach
orthogonal transform
orthogonal filter banks
time effectiveness
prediction accuracy
procesor graficzny
model przewidywania czasu wykonania
dyskretna transformata falkowa
struktura sieciowa
podejście oparte na splotach
przekształcenia ortogonalne
ortogonalne banki filtrów
efektywność czasowa
dokładność przewidywania
Opis:
Parallel realizations of discrete transforms (DTs) computation algorithms (DTCAs) performed on graphics processing units (GPUs) play a significant role in many modern data processing methods utilized in numerous areas of human activity. In this paper the authors propose a novel execution time prediction model, which allows for accurate and rapid estimation of execution times of various kinds of structurally different DTCAs performed on GPUs of distinct architectures, without the necessity of conducting the actual experiments on physical hardware. The model can serve as a guide for the system analyst in making the optimal choice of the GPU hardware solution for a given computational task involving particular DT calculation, or can help in choosing the best appropriate parallel implementation of the selected DT, given the limitations imposed by available hardware. Restricting the model to exhaustively adhere only to the key common features of DTCAs enables the authors to significantly simplify its structure, leading consequently to its design as a hybrid, analytically–simulational method, exploiting jointly the main advantages of both of the mentioned techniques, namely: time-effectiveness and high prediction accuracy, while, at the same time, causing mutual elimination of the major weaknesses of both of the specified approaches within the proposed solution. The model is validated experimentally on two structurally different parallel methods of discrete wavelet transform (DWT) computation, i.e. the direct convolutionbased and lattice structure-based schemes, by comparing its prediction results with the actual measurements taken for 6 different graphics cards, representing a fairly broad spectrum of GPUs compute architectures. Experimental results reveal the overall average execution time and prediction accuracy of the model to be at a level of 97.2%, with global maximum prediction error of 14.5%, recorded throughout all the conducted experiments, maintaining at the same time high average evaluation speed of 3.5 ms for single simulation duration. The results facilitate inferring the model generality and possibility of extrapolation to other DTCAs and different GPU architectures, which along with the proposed model straightforwardness, time-effectiveness and ease of practical application, makes it, in the authors’ opinion, a very interesting alternative to the related existing solutions.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 1; e139393, 1--30
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Execution time prediction model for parallel GPU realizations of discrete transforms computation algorithms
Autorzy:
Puchala, Dariusz
Stokfiszewski, Kamil
Wieloch, Kamil
Powiązania:
https://bibliotekanauki.pl/articles/2173635.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
graphics processing unit
GPU
execution time prediction model
discrete wavelet transform
DWT
lattice structure
convolution-based approach
orthogonal transform
orthogonal filter banks
time effectiveness
prediction accuracy
procesor graficzny
model przewidywania czasu wykonania
dyskretna transformata falkowa
struktura sieciowa
podejście oparte na splotach
przekształcenia ortogonalne
ortogonalne banki filtrów
efektywność czasowa
dokładność przewidywania
Opis:
Parallel realizations of discrete transforms (DTs) computation algorithms (DTCAs) performed on graphics processing units (GPUs) play a significant role in many modern data processing methods utilized in numerous areas of human activity. In this paper the authors propose a novel execution time prediction model, which allows for accurate and rapid estimation of execution times of various kinds of structurally different DTCAs performed on GPUs of distinct architectures, without the necessity of conducting the actual experiments on physical hardware. The model can serve as a guide for the system analyst in making the optimal choice of the GPU hardware solution for a given computational task involving particular DT calculation, or can help in choosing the best appropriate parallel implementation of the selected DT, given the limitations imposed by available hardware. Restricting the model to exhaustively adhere only to the key common features of DTCAs enables the authors to significantly simplify its structure, leading consequently to its design as a hybrid, analytically–simulational method, exploiting jointly the main advantages of both of the mentioned techniques, namely: time-effectiveness and high prediction accuracy, while, at the same time, causing mutual elimination of the major weaknesses of both of the specified approaches within the proposed solution. The model is validated experimentally on two structurally different parallel methods of discrete wavelet transform (DWT) computation, i.e. the direct convolutionbased and lattice structure-based schemes, by comparing its prediction results with the actual measurements taken for 6 different graphics cards, representing a fairly broad spectrum of GPUs compute architectures. Experimental results reveal the overall average execution time and prediction accuracy of the model to be at a level of 97.2%, with global maximum prediction error of 14.5%, recorded throughout all the conducted experiments, maintaining at the same time high average evaluation speed of 3.5 ms for single simulation duration. The results facilitate inferring the model generality and possibility of extrapolation to other DTCAs and different GPU architectures, which along with the proposed model straightforwardness, time-effectiveness and ease of practical application, makes it, in the authors’ opinion, a very interesting alternative to the related existing solutions.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 1; art. no. e139393
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies