- Tytuł:
- On two functional equations connected with distributivity of fuzzy implications
- Autorzy:
-
Ger, Roman
Kuczma, Marcin Emil
Niemyska, Wanda - Powiązania:
- https://bibliotekanauki.pl/articles/746368.pdf
- Data publikacji:
- 2015
- Wydawca:
- Polskie Towarzystwo Matematyczne
- Tematy:
-
fuzzy implication
distributivity
functional equation
t-conorm - Opis:
- The distributivity law for a fuzzy implication \(I\colon [0,1]^2 \to [0,1]\) with respect to a fuzzy disjunction \(S\colon [0,1]^2 \to [0,1]\) states that the functional equation \( I(x,S(y,z))=S(I(x,y),I(x,z)) \) is satisfied for all pairs \((x,y)\) from the unit square. To compare some results obtained while solving this equation in various classes of fuzzy implications, Wanda Niemyska has reduced the problem to the study of the following two functional equations: \( h(\min(xg(y),1)) = \min(h(x)+ h(xy),1)\), \(x \in (0,1)\), \(y \in (0,1]\), and \( h(xg(y)) = h(x)+ h(xy)\), \(x,y \in (0, \infty)\), in the class of increasing bijections \(h\colon [0,1] \to [0,1]\) with an increasing function \(g\colon (0,1] \to [1, \infty)\) and in the class of monotonic bijections \(h\colon (0, \infty) \to (0, \infty)\) with a function \(g\colon (0, \infty) \to (0, \infty)\), respectively. A description of solutions in more general classes of functions (including nonmeasurable ones) is presented.
- Źródło:
-
Commentationes Mathematicae; 2015, 55, 2
0373-8299 - Pojawia się w:
- Commentationes Mathematicae
- Dostawca treści:
- Biblioteka Nauki