- Tytuł:
- The Distance Magic Index of a Graph
- Autorzy:
-
Godinho, Aloysius
Singh, Tarkeshwar
Arumugam, S. - Powiązania:
- https://bibliotekanauki.pl/articles/31342438.pdf
- Data publikacji:
- 2018-02-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
distance magic labeling
distance magic index
S -magic graph
S -magic labeling - Opis:
- Let $G$ be a graph of order $n$ and let $S$ be a set of positive integers with $ |S| = n $. Then $G$ is said to be $S$-magic if there exists a bijection $ \phi : V (G) \rightarrow S $ satisfying $ \Sigma_{ x \in N } (u) \ \phi (x) = k $ (a constant) for every $ u \in V (G) $. Let $ \alpha (S) = \text{max} \{ s : s \in S \} $. Let $ i(G) = \text{min} \ \alpha (S) $, where the minimum is taken over all sets $S$ for which the graph $G$ admits an $S$-magic labeling. Then $ i(G) − n $ is called the distance magic index of the graph $G$. In this paper we determine the distance magic index of trees and complete bipartite graphs.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2018, 38, 1; 135-142
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki