Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "agricultural biogas plant" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Exchange of Carbon Dioxide between the Atmosphere and the Maize Field Fertilized with Digestate from Agricultural Biogas Plant
Autorzy:
Czubaszek, Robert
Powiązania:
https://bibliotekanauki.pl/articles/123768.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
carbon dioxide
agricultural biogas plant
digestate
Opis:
The aim of the research was to determine the exchange rate of carbon dioxide between the atmosphere and the maize field fertilized with the digestate from an agricultural biogas plant. The studies considered both the amount of net carbon dioxide emission which is the difference between the amount of this gas absorbed by vegetation and its amount emitted from the whole ecosystem of the field as well as the emission resulting only from the changes occurring in the soil. The CO2 emission from the entire field was measured by the eddy covariance method with a set of LI-7500A analyzer (LI-COR Biosciences, USA) for measuring the CO2/H2O concentration in air and 3-axis WindMaster ultrasonic anemometer (GILL, UK). The data from the analyzers were recorded at 10 Hz, while the CO2 streams were calculated using the EddyPro 5 software. The soil emission was determined with the chamber method using the automated ACE measurement system (ADC BioScientific, UK). Until the maize reached maturity, the study was carried out once a week, at 10.00 – 14.00. During each measurement day, the basic meteorological parameters were measured as well. The obtained results showed a clear relationship between the plants development phase and the size of the net CO2 exchange. The negative values of carbon dioxide streams, indicating the absorption of this gas from the atmosphere, were observed already in the case of plants with a height of approx. 25 cm, while the maximum values were reached after the release of panicles by maize. The carbon dioxide emission from soils, measured at the same time, was maintained throughout the entire research period at a similar low level, undergoing only slight fluctuations associated with variable soil moisture. The study showed that the maize field, almost throughout all growing season, can be treated as a sink of atmospheric carbon dioxide, reducing its emission from agriculture.
Źródło:
Journal of Ecological Engineering; 2019, 20, 1; 145-151
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Emissions of carbon dioxide and methane from fields fertilized with digestate from an agricultural biogas plant
Autorzy:
Czubaszek, Robert
Wysocka-Czubaszek, Agnieszka
Powiązania:
https://bibliotekanauki.pl/articles/972615.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Instytut Agrofizyki PAN
Tematy:
: agricultural biogas plant
digestate
greenhouse
gases (ghg) emissions
Opis:
Digestate from biogas plants can play important role in agriculture by providing nutrients, improving soil structure and reducing the use of mineral fertilizers. Still, less is known about greenhouse gas emissions from soil during and after digestate application. The aim of the study was to estimate the emissions of carbon dioxide (CO2) and methane (CH4) from a field which was fertilized with digestate. The gas fluxes were measured with the eddy covariance system. Each day, the eddy covariance system was installed in various places of the field, depending on the dominant wind direction, so that each time the results were obtained from an area where the digestate was distributed. The results showed the relatively low impact of the studied gases emissions on total greenhouse gas emissions from agriculture. Maximum values of the CO2 and CH4 fluxes, 79.62 and 3.049 μmol s-1 m-2, respectively, were observed during digestate spreading on the surface of the field. On the same day, the digestate was mixed with the topsoil layer using a disc harrow. This resulted in increased CO2 emissions the following day. Intense mineralization of digestate, observed after fertilization may not give the expected effects in terms of protection and enrichment of soil organic matter.
Źródło:
International Agrophysics; 2018, 32, 1
0236-8722
Pojawia się w:
International Agrophysics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies