- Tytuł:
- On the topological dimension of the solutions sets for some classes of operator and differential inclusions
- Autorzy:
-
Bader, Ralf
Gel'man, Boris
Kamenskii, Mikhail
Obukhovskii, Valeri - Powiązania:
- https://bibliotekanauki.pl/articles/729534.pdf
- Data publikacji:
- 2002
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
solutions set
fixed points set
topological dimension
multivalued map
condensing map
topological degree
differential inclusion
periodic problem - Opis:
- In the present paper, we give the lower estimation for the topological dimension of the fixed points set of a condensing continuous multimap in a Banach space. The abstract result is applied to the fixed point set of the multioperator of the form $ = S _F$ where $_F$ is the superposition multioperator generated by the Carathéodory type multifunction F and S is the shift of a linear injective operator. We present sufficient conditions under which this set has the infinite topological dimension. In the last section of the paper, we consider the applications of the solutions sets for Cauchy and periodic problems for semilinear differential inclusions in a Banach space.
- Źródło:
-
Discussiones Mathematicae, Differential Inclusions, Control and Optimization; 2002, 22, 1; 17-32
1509-9407 - Pojawia się w:
- Discussiones Mathematicae, Differential Inclusions, Control and Optimization
- Dostawca treści:
- Biblioteka Nauki