Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sieć neuronowa falkowa" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Klasyfikacja rodzaju i stopnia uszkodzenia zębów kół przekładni oparta na ciągłej transformacie falkowej i sieci neuronowej typu MLP - koncepcja wykorzystania danych z modelu i rzeczywistej przekładni
Classification of kinds and degee of tooth gear fail by using continuous wavelet transform and MLP neural network - conception of using dates from the model and real gearbox
Autorzy:
Czech, P.
Łazarz, B.
Powiązania:
https://bibliotekanauki.pl/articles/328338.pdf
Data publikacji:
2007
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
diagnostyka
przekładnia zębata
sztuczna sieć neuronowa
ciągła transformata falkowa
diagnostics
gear fault
neural network
continuous wavelet transform (CWT)
Opis:
W opracowaniu przedstawiono wyniki próby zastosowania sztucznej sieci neuronowej jako klasyfikatora rodzaju i stopnia uszkodzenia zębów kół w przekładni. Klasyfikator neuronowy oparto na sztucznej sieci neuronowej typu MLP. Dane wejściowe do klasyfikatora stanowiła macierz złożona z miar statystycznych otrzymanych z ciągłej analizy falkowej. Zidentyfikowany model przekładni zębatej pracującej w układzie napędowym oraz stanowisko mocy krążącej FZG posłużyły do generacji zbiorów uczących i testujących zastosowanych w eksperymencie.
The work presents results of an experiment that employs the artificial neuronal network in the task of identification of kinds and degree of tooth failure. Neural Networks were based on the Multi Layer Perceptrons. Statistical measures that describe the emergence and degree of tooth gear diagnostic served as input data for the artificial neural networks. The measures employed in the experiment were obtained from signals through the continuous wavelet transform. In the experiment the dynamic model of gearbox and power circulating gear testing machine was used as generator of data.
Źródło:
Diagnostyka; 2007, 2(42); 75-82
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie analizy WPT i sieci neuronowych PNN w diagnozowaniu zakłóceń w dopływie paliwa do cylindrów
The application of a wavelet packet transform and PNN neural network for disturbances in the fuel inflow SI engine detection
Autorzy:
Czech, P.
Madej, H.
Powiązania:
https://bibliotekanauki.pl/articles/256599.pdf
Data publikacji:
2009
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Technologii Eksploatacji - Państwowy Instytut Badawczy
Tematy:
diagnostyka
silnik spalinowy
analiza falkowa (WPT)
sieć neuronowa PNN
diagnostics
SI engine
wavelet packet transform
WPT
PNN neural network
Opis:
W artykule przedstawiono wyniki badań diagnostycznych silnika spalinowego przy zastosowaniu pakietu analizy falkowej (WPT) i probabilistycznej sieci neuronowej. Obiektem badań był czterocylindrowy silnik spalinowy z zapłonem iskrowym. Głównym celem badań było określenie wpływu symulowanego braku dopływu paliwa do poszczególnych cylindrów na sygnał przyspieszeń drgań kadłuba silnika. Zarejestrowane sygnały przyspieszeń drgań zostały poddane analizie za pomocą WPT w celu określenia entropii sygnału na poszczególnych poziomach dekompozycji. Określona wartość entropii stanowiła podstawę do budowy wzorców stanów pracy silnika przeznaczonych do uczenia sieci neuronowych. Z przeprowadzonych badań wynika, że istnieje możliwość wykorzystania analizy WPT i probabilistycznych sztucznych sieci neuronowych do diagnozowania uszkodzeń silników spalinowych.
An investigation of a fault diagnostic technique for internal combustion engine using wavelet packet transform (WPT) and probabilistic neural network is presented in this paper. The object of research was a four-cylinder spark ignition engine. The main purpose of the research was to determine the effect of the lack of fuel inflow to an individual cylinder of the engine block vibration signal. The vibration signals are decomposed by WPT to obtain the approximated and detailed coefficient and to calculate wavelet packet node entropy. The value of entropy was used as a basis in the construction of the states of engine operation intended for teaching probabilistic neural network. The experimental results indicated that the proposed system using the engine block vibration signal is effective and can be used for fault detection of an IC engine.
Źródło:
Problemy Eksploatacji; 2009, 1; 17-26
1232-9312
Pojawia się w:
Problemy Eksploatacji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Entropia dyskretnej transformaty falkowej i radialne sieci neuronowe jako narzędzia diagnostyki nieszczelności zaworu wylotowego w silniku ZS
Entropy of discrete wavelet transform and radial neural networks as a diagnosis tool of diesel engine exhaust valve fault
Autorzy:
Czech, P.
Powiązania:
https://bibliotekanauki.pl/articles/198343.pdf
Data publikacji:
2011
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
transformata falkowa
sieć neuronowa
diagnostyka
zawór wydechowy
silnik z zapłonem samoczynnym
wavelet transform
neural network
diagnostics
exhaust valve
compression-ignition engine
Opis:
W przypadku diagnozowania silnika spalinowego metodami drganiowymi nie można zapominać o występowaniu wielu źródeł drgań, co jest przyczyna wzajemnego zakłócania symptomów uszkodzeń. Ze względu na konieczność analizy sygnałów niestacjonarnych i impulsowych w niniejszym artykule wykorzystano dyskretna transformatę falkową (DWT). Na podstawie sygnałów zdekomponowanych za jej pomocą wyznaczono wartość entropii, która stanowiła podstawę do budowy wzorców stanów pracy silnika, przeznaczonych do uczenia sieci neuronowych. Z przeprowadzonych badań wynika, że istnieje możliwość wykorzystania radialnych sztucznych sieci neuronowych do oceny nieszczelności zaworu wylotowego w silniku ZS.
In case of diagnosing combustion engines by vibration methods, the presence of numerous sources of vibration cannot be neglected, which are the reason for reciprocal interference of symptoms of fault. Owing to the necessity of analyzing non-stationary and impulse signals, a discrete wavelet transform (DWT) has been applied in this study. Based on the signals' decomposition performed by means of the transform, the value of entropy was determined, which served as a basis in the construction of the states of engine operation intended for teaching neural networks. As results from the research, there is a possibility of using radial neural networks to assess the diesel engine exhaust valve fault.
Źródło:
Zeszyty Naukowe. Transport / Politechnika Śląska; 2011, 73; 15-20
0209-3324
2450-1549
Pojawia się w:
Zeszyty Naukowe. Transport / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies