Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "explosion hazards" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Zjawisko detonacji mieszanin pyłowych: przegląd stanu wiedzy
Dust Detonation Phenomenon: State of the Art
Autorzy:
Porowski, R.
Powiązania:
https://bibliotekanauki.pl/articles/373175.pdf
Data publikacji:
2014
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
detonacja
DDT
zagrożenie wybuchem
pyły palne
detonation
explosion hazards
combustible dusts
Opis:
Cel: Celem artykułu jest przedstawienie przeglądu stanu wiedzy w zakresie detonacji mieszanin pyłowych. Opisano prace badawcze prowadzone przez ośrodki naukowe na całym świecie, ze szczególnym nastawieniem na badania eksperymentalne detonacji mieszanin pyłowo-powietrznych i pyłowo-tlenowych oraz mierzone podczas tych badań parametry detonacji. Wyjaśniono również podstawy teoretyczne propagacji fali spalania w kanałach rurach oraz zjawisko przejścia do detonacji (DDT). Wprowadzenie: W większości urządzeń i aparatów procesowych stosowanych w przemyśle, w których wykorzystuje się pyły palne, zjawisko spalania występuje w formie deflagracji, gdzie transport ciepła i masy odgrywa bardzo znaczącą rolę. Deflagracja stanowi tzw. „poddźwiękowy” rodzaj spalania, w którym reakcje chemiczne procesu spalania zachodzą pod prawie stałym ciśnieniem. Front fali spalania deflagracyjnego rozprzestrzenia się z prędkością, która jest sumą prędkości płomienia oraz prędkości rozprzestrzeniania się produktów spalania. Jeśli prędkość płomienia będzie wystarczająco niska, tak jak wcześniej wspomniano, zjawisko spalania przebiegało będzie pod stałym ciśnieniem. W przeciwnym przypadku powstaną pewne zakłócenia (turbulencje) oraz wzrost ciśnienia. Wówczas front płomienia będzie przyspieszał, rozprzestrzeniając się jako tzw. fala spalania poprzedzająca falę uderzeniową. Dalsze przyspieszanie frontu płomienia może spowodować proces przejścia z deflagracji w detonację. Zjawisko detonacji mieszanin pyłowych jest raczej jednostkowym, skrajnym przypadkiem propagacji płomienia w warunkach przemysłowych, co nie oznacza oczywiście, że niemożliwym do wystąpienia. Metodologia: Artykuł został opracowany na podstawie przeglądu literatury, dostępnych w publikacjach wyników prac naukowych dotyczących zjawiska detonacji w mieszaninach pyłowych. Wnioski: Pomimo że badania detonacji w mieszaninach pyłowych prowadzone są już od wielu lat przez czołowe ośrodki naukowe na świecie, to w dalszym ciągu istnieje potrzeba poznania podstawowych parametrów tego procesu oraz czynników mających wpływ na to zjawisko. Szczególnie istotne z praktycznego punktu widzenia bezpieczeństwa w przemyśle wydaje się być opracowanie bazy danych o parametrach detonacji w mieszaninach pyłowych, takich jak przede wszystkim szerokość komórki detonacji, granice detonacji, prędkości detonacji, odległości rozbiegowe do DDT, jak również krytyczny rozmiar cząstek pyłu, w których możliwe byłoby przejście od spalania deflagracyjnego do detonacji w mieszaninach pyłowych.
Aim: The aim of this paper is to present a state of the art on dust detonation phenomenon. The author described some research works done in different research institutions, including experimental works on dust-air and dust-oxygen detonations and measured parameters, e.g. pressure and velocity profiles. The author also described some fundamental theories on blast wave propagation in tubes and channels as well as a phenomenon called deflagration-to-detonation transition (DDT). Introduction: In most processes equipment and apparatuses in industry, where flammable dusts are handled, combustion phenomenon exists as the deflagration flame with great influence of heat and mass transfer. Deflagration is a mode of subsonic combustion wave, where chemical kinetics undergoes under almost constant pressure. Deflagration front propagates with velocity, which is a sum of flame speed and combustion products velocity. If the flame speed will be low enough then combustion occurred at almost constant pressure. In other way there will be some turbulence at the flame front and pressure will increase. Flame front will accelerate and in some circumstances the deflagration to detonation process will occur. Dust detonation phenomenon seems to be an unique case of flame dusts. Heat transfer from the burning dust cloud to the unburnt part does not proceed by the diffusion like in the deflagration explosion. It is possible by extremely fast compression of unburnt mixture covered by the shock wave propagating with high-speed velocity. Methodology: Paper was prepared based on the state of the art taken from available literature and results of experimental works on dust detonation phenomenon. Conclusions: Research in dust detonation phenomenon is the ongoing process from many years but there is still a gap of knowledge of fundamental parameters and correlations. An important matter could be to provide the database of detonation cell size, propagation velocity, detonation limits, run-up distance and also some critical size of dust particle supporting DDT in dust mixtures.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2014, 4; 85-93
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Some comments on shock tube measurements of gaseous detonations
Kilka komentarzy na temat pomiarów detonacji gazowych w rurze uderzeniowej
Autorzy:
Porowski, R.
Teodorczyk, A.
Powiązania:
https://bibliotekanauki.pl/articles/372774.pdf
Data publikacji:
2011
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
acetylen
detonacja
rura uderzeniowa
wodór
zagrożenie wybuchem
acetylene
detonation
explosion hazards
hydrogen
shock tube
Opis:
Our goal was to adopt the classical shock tube technique for the experimental investigation of the propagating shock-induced detonation wave. We used different gaseous mixtures in the driver section, namely both stoichiometric hydrogen-oxygen and acetylene-oxygen mixtures. The driven section was filled only with stoichiometric hydrogen-air mixture. An influence of the driver section mixture on the pressure and velocity of the propagating and reflected detonation wave in the driven section of the shock tube was investigated experimentally and computationally. We found some interesting observations and correlations between calculated results and experimental data. Calculated pressure and velocity values for tested mixture are in a quite good agreement with our shock tube results for the propagating detonation wave. We also tried to give some theoretical introduction on modeling the shock-induced initiation process that can place in the classical shock tube.
Celem naszej pracy była próba zaadoptowania techniki klasycznej rury uderzeniowej do badań doświadczalnych nad zjawiskiem propagacji i inicjacji fali detonacyjnej. W przeprowadzonych badaniach wykorzystaliśmy w sekcji napędzającej rury uderzeniowej stechiometryczne mieszaniny wodorowo-tlenowe oraz acetylenowo-tlenowe. Sekcja testowa wypełniona została stechiometryczną mieszaniną wodorowo-powietrzną. Podczas badań doświadczalnych i numerycznych badaliśmy wpływ mieszanin w sekcji napędzającej na ciśnienie oraz prędkość detonacji w sekcji testowej. Znaleziono kilka interesujących relacji pomiędzy wynikami obliczeń, a wynikami badań doświadczalnych.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2011, 2; 43-50
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies