Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "heat of detonation" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Studies on Empirical Approaches for Estimation of Detonation Velocity of High Explosives
Autorzy:
Shekhar, H.
Powiązania:
https://bibliotekanauki.pl/articles/358324.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
explosives
detonation
velocity of detonation (VOD)
empirical
density
heat of formation
Opis:
Despite many computer based codes like CHEETAH, TIGER, RUBY, BKW, etc. the velocity of detonation (VOD) for explosive molecules and explosive mixtures (formulations) is estimated by several empirical formulations. This article discusses various approaches for the estimation of the velocity of detonation by empirical mathematical equations. The formulation proposed by Kamlet in 1968 is the oldest one and it is confirmed to be more reliable by many subsequent researchers. The method proposed by Rothstein (1978), Xiong (1985), Stein (1990), Keshavarz (2006) are discussed and compared for conventional explosive molecules like RDX, HMX, TNT, PETN, and HNS. The values of the velocity of detonation for these molecules are found to be very close to each other. Further comparison of empirical mathematical formulations was carried out for four other explosive molecules of relatively recent origin (CL-20, FOX-7, TATB and NTO). These molecules were selected as they were unknown at the time of the proposed formulations except that by Keshavarz (2006). For CL-20, the velocity of detonation by different methods is 9345.1 m/s (Kamlet), 9378.8 m/s (Rothstein), 9116.0 m/s (Xiong), 9383.7 m/s (Stein) and 9887.9 m/s (Keshavarz) respectively. The method proposed by Keshavarz gives a higher value of the velocity of detonation than the others. For FOX-7, the values are 8636.6 m/s (Kamlet), 8733.3 m/s (Rothstein), 8766.1 m/s (Xiong), 8645.0 m/s (Stein) and 8245.3 m/s (Keshavarz) respectively. In this case the Keshavarz approach gives a lower value of the velocity of detonation. For these molecules, the results by the Xiong method is very close to that obtained by the Kamlet method. Deviation, as well as dispersion of the calculated values by other methods, is on the high side.
Źródło:
Central European Journal of Energetic Materials; 2012, 9, 1; 39-48
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Computational Investigation on the Structure and Performance of Novel 4,7-dinitro-furazano-[3,4-d]-pyridazine Derivatives
Autorzy:
Wang, K.
Shu, Y.
Liu, N.
Ding, X.
Wu, Z.
Lu, Y.
Powiązania:
https://bibliotekanauki.pl/articles/358090.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
4,7-dinitro-furazano-[3,4-d]-pyridazine
heat of formation
density
detonation performance
bond dissociation energy
Opis:
Seven novel energetic 4,7-dinitro-furazano-[3,4-d]-pyridazine derivatives were designed, and their optimized structures and performances were studied by density functional theory (DFT) at B3LYP/6-311g(d,p) level. The detonation performances were estimated by the Kamlet-Jacobs equations. The results show that these compounds have high crystal densities (1.818-1.925 g·cm−3), detonation velocities (8.51-9.56 km·s−1) and detonation pressures (32.28-41.70 GPa). The bond dissociation energies (BDEs) of the weakest bond (N–O bond) vary from 70.889 kJ·mol−1 to 173.283 kJ·mol−1, and some of them exhibit higher BDEs than that of RDX (N–NO2 bond, 149.654 kJ·mol−1) and HMX (N–NO2 bond, 154.905 kJ·mol−1). M4 and M5 exhibit similar and higher detonation performance than RDX (8.81 km·s−1, 34.47 GPa). The detonation performance of M7 (9.56 km·s−1, 41.70 GPa) even surpasses that of HMX (9.10 km·s−1, 39.00 GPa). Otherwise, the specific impulse values of M1-M7 (266-279 s) outperform HMX (266 s) by 0-13 s, which indicates that M1-M7 may show better performance as monopropellants. It is concluded that density, heat of formation, stability, detonation performance and specific impulse of the designed compounds depend on the position and number of the N→O oxidation bonds.
Źródło:
Central European Journal of Energetic Materials; 2017, 14, 1; 26-46
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies