Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "agent learning" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Multi agent deep learning with cooperative communication
Autorzy:
Simões, David
Lau, Nuno
Reis, Luís Paulo
Powiązania:
https://bibliotekanauki.pl/articles/1837537.pdf
Data publikacji:
2020
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
multi-agent systems
deep reinforcement learning
centralized learning
Opis:
We consider the problem of multi agents cooperating in a partially-observable environment. Agents must learn to coordinate and share relevant information to solve the tasks successfully. This article describes Asynchronous Advantage Actor-Critic with Communication (A3C2), an end-to-end differentiable approach where agents learn policies and communication protocols simultaneously. A3C2 uses a centralized learning, distributed execution paradigm, supports independent agents, dynamic team sizes, partiallyobservable environments, and noisy communications. We compare and show that A3C2 outperforms other state-of-the-art proposals in multiple environments.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2020, 10, 3; 189-207
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Handling realistic noise in multi-agent systems with self-supervised learning and curiosity
Autorzy:
Szemenyei, Marton
Reizinger, Patrik
Powiązania:
https://bibliotekanauki.pl/articles/2147129.pdf
Data publikacji:
2022
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
deep reinforcement learning
multi-agent environment
autonomous driving
robot soccer
self-supervised learning
Opis:
Most reinforcement learning benchmarks – especially in multi-agent tasks – do not go beyond observations with simple noise; nonetheless, real scenarios induce more elaborate vision pipeline failures: false sightings, misclassifications or occlusion. In this work, we propose a lightweight, 2D environment for robot soccer and autonomous driving that can emulate the above discrepancies. Besides establishing a benchmark for accessible multiagent reinforcement learning research, our work addresses the challenges the simulator imposes. For handling realistic noise, we use self-supervised learning to enhance scene reconstruction and extend curiosity-driven learning to model longer horizons. Our extensive experiments show that the proposed methods achieve state-of-the-art performance, compared against actor-critic methods, ICM, and PPO.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2022, 12, 2; 135--148
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies