Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Yang, huang" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
Moving object detection for complex scenes by merging BG modeling and deep learning method
Autorzy:
Lin, Chih-Yang
Huang, Han-Yi
Lin, Wei-Yang
Ng, Hui-Fuang
Muchtar, Kahlil
Nurdin, Nadhila
Powiązania:
https://bibliotekanauki.pl/articles/23944823.pdf
Data publikacji:
2023
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
video surveillance
deep learning
moving object detection
Opis:
In recent years, many studies have attempted to use deep learning for moving object detection. Some research also combines object detection methods with traditional background modeling. However, this approach may run into some problems with parameter settings and weight imbalances. In order to solve the aforementioned problems, this paper proposes a new way to combine ViBe and Faster-RCNN for moving object detection. To be more specific, our approach is to confine the candidate boxes to only retain the area containing moving objects through traditional background modeling. Furthermore, in order to make the detection able to more accurately filter out the static object, the probability of each region proposal then being retained. In this paper, we compare four famous methods, namely GMM and ViBe for the traditional methods, and DeepBS and SFEN for the deep learning-based methods. The result of the experiment shows that the proposed method has the best overall performance score among all methods. The proposed method is also robust to the dynamic background and environmental changes and is able to separate stationary objects from moving objects. Especially the overall F-measure with the CDNET 2014 dataset (like in the dynamic background and intermittent object motion cases) was 0,8572.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2023, 13, 3; 151--163
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep adversarial neural network for specific emitter identification under varying frequency
Autorzy:
Huang, Keju
Yang, Junan
Liu, Hui
Hu, Pengjiang
Powiązania:
https://bibliotekanauki.pl/articles/2173603.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
specific emitter identification
unsupervised domain adaptation
transfer learning
deep learning
identyfikacja emitera konkretna
adaptacja domeny nienadzorowana
transfer uczenia się
uczenie głębokie
Opis:
Specific emitter identification (SEI) is the process of identifying individual emitters by analyzing the radio frequency emissions, based on the fact that each device contains unique hardware imperfections. While the majority of previous research focuses on obtaining features that are discriminative, the reliability of the features is rarely considered. For example, since device characteristics of the same emitter vary when it is operating at different carrier frequencies, the performance of SEI approaches may degrade when the training data and the test data are collected from the same emitters with different frequencies. To improve performance of SEI under varying frequency, we propose an approach based on continuous wavelet transform (CWT) and domain adversarial neural network (DANN). The proposed approach exploits unlabeled test data in addition to labeled training data, in order to learn representations that are discriminative for individual emitters and invariant for varying frequencies. Experiments are conducted on received signals of five emitters under three carrier frequencies. The results demonstrate the superior performance of the proposed approach when the carrier frequencies of the training data and the test data differ.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 2; art. no. e136737
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep adversarial neural network for specific emitter identification under varying frequency
Autorzy:
Huang, Keju
Yang, Junan
Liu, Hui
Hu, Pengjiang
Powiązania:
https://bibliotekanauki.pl/articles/2128144.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
specific emitter identification
unsupervised domain adaptation
transfer learning
deep learning
identyfikacja emitera konkretna
adaptacja domeny nienadzorowana
transfer uczenia się
uczenie głębokie
Opis:
Specific emitter identification (SEI) is the process of identifying individual emitters by analyzing the radio frequency emissions, based on the fact that each device contains unique hardware imperfections. While the majority of previous research focuses on obtaining features that are discriminative, the reliability of the features is rarely considered. For example, since device characteristics of the same emitter vary when it is operating at different carrier frequencies, the performance of SEI approaches may degrade when the training data and the test data are collected from the same emitters with different frequencies. To improve performance of SEI under varying frequency, we propose an approach based on continuous wavelet transform (CWT) and domain adversarial neural network (DANN). The proposed approach exploits unlabeled test data in addition to labeled training data, in order to learn representations that are discriminative for individual emitters and invariant for varying frequencies. Experiments are conducted on received signals of five emitters under three carrier frequencies. The results demonstrate the superior performance of the proposed approach when the carrier frequencies of the training data and the test data differ.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 2; e136737, 1--9
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies