Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "laser processing" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Wizualizacja i przetwarzanie chmury punktów lotniczego skaningu laserowego
Visualization and processing of airborne laser scanning points cloud
Autorzy:
Twardowski, M.
Marmol, U.
Powiązania:
https://bibliotekanauki.pl/articles/130604.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
lotniczy skaning laserowy
wizualizacja
przetwarzanie danych
airborne laser scanning (ALS)
visualization
data processing
Opis:
Lotniczy skaning laserowy stwarza szerokie pole dla badań naukowych i prac badawczych nad rozwojem nowych algorytmów i metod analizy danych przestrzennych. Niestety większość istniejących oprogramowań do przetwarzania danych laserowych nie pozwala na modyfikację istniejących procedur, niekiedy wręcz działając na zasadzie „czarnej skrzynki”. Wejściowe dane laserowe ulegają bliżej nie określonym operacjom, przynosząc trudne do zweryfikowania wyniki, co zdecydowanie ogranicza wolność naukową w pracach badawczych. Dlatego w Katedrze Geoinformacji, Fotogrametrii i Teledetekcji Środowiska AGH narodziła się idea stworzenia własnego narzędzia, opartego na licencji OpenSource, które nie będzie obarczone żadnymi ograniczeniami. Były to główne przesłanki do powstania projektu LIDARView. Założeniem projektu jest otwarty dostęp do kodu źródłowego obiektów, co pozwoli na udoskonalanie zastosowanych algorytmów. Modularna budowa systemu umożliwi nieograniczone rozwijanie jego potencjału poprzez aktualizację i dodawanie nowych elementów do systemu. Projekt LIDARView jest obecnie w początkowej fazie rozwoju. Oprogramowanie umożliwia podstawowe operacje na chmurze punktów, takie jak: powiększanie, obracanie i przesuwanie danych laserowych. Zakładka Image pozwala na integrację danych laserowych z danymi obrazowymi. Umożliwia także wykorzystanie obserwacji stereoskopowej w procesie przetwarzania danych lidarowych poprzez możliwość edycji linii nieciągłości i form morfologicznych W zakładce Cloud zostały zaimplementowane algorytmy do klasyfikacji i filtracji chmury punktów. Na obecnym etapie rozwoju zostały zaprogramowane proste filtry usunięcia błędów grubych i rozrzedzenia chmury punktów. Została także wprowadzona procedura automatycznej klasyfikacji chmury danych laserowych na punkty terenowe i punkty pokrycia. Filtracja odbywa się z wykorzystaniem algorytmu częstotliwościowego (Marmol, 2010). Autorzy projektu mają nadzieję, że dzięki otwartej strukturze systemu, projekt LIDARView nie ulegnie stagnacji i będzie rozwijany także w innych ośrodkach badawczych.
Relatively new technology which is laser scanning provides wide area of scientific study and research on new algorithms and spatial analysis methods. Unfortunately most of existing software does not allow for modification of existing procedures, usually working on a “black box” principle, where laser input data are treated with unknown operations, yielding results which are hard to verify. It severely impedes scientific freedom while research is involved. That is why idea of creating own software was born, based on open source license, not encumbered with those restricttions. Those were main reasons for creating LIDARView project. It assumes open access to modules source code allowing for improvements of used algorithms and modular design allows for unrestricted research through additions of new elements. LIDARView project is currently in its starting phase. Software allows for basic point cloud operations such as: zooming, translation and rotation of laser data. Included image module allows for displaying photographs as background for a point cloud. Cloud module can be used for accessing classification and filter functions. Current development state includes: gross error removal, cloud thinning and point classification for topographic surface.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2012, 23; 457-465
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metoda OptD do redukcji danych w opracowaniu wyników pomiarów linii elektroenergetycznych
The OptD method for data reduction in the development of surveying of power lines
Autorzy:
Błaszczak-Bąk, W.
Sobieraj-Żłobińska, A.
Powiązania:
https://bibliotekanauki.pl/articles/104955.pdf
Data publikacji:
2017
Wydawca:
Politechnika Rzeszowska im. Ignacego Łukasiewicza. Oficyna Wydawnicza
Tematy:
przetwarzanie danych
lotniczy skaning laserowy
metoda redukcji
data processing
airborne laser scanning
reduction method
Opis:
Skaning laserowy to technologia dostarczająca we względnie krótkim czasie dużą ilość danych pomiarowych. Jest to zarazem pozytywna jak i negatywna cecha tej technologii. Z jednej strony w wyniku skaningu otrzymuje się dane, które szczegółowo odzwierciedlają pomierzony obiekt. Z drugiej strony trudność sprawia przetwarzanie takiej ilości danych i nie zawsze wszystkie dane ze skaningu są niezbędne do realizacji wybranego zadania. Z tych względów nieustannie trwają prace nad opracowaniem algorytmów umożliwiających usprawnienie ich przetwarzania. Jednym z rozwiązań jest zmniejszenie ilości danych. W pracy przedstawiono wyniki redukcji danych pochodzących z pomiaru lotniczym skaningiem laserowym napowietrznych sieci elektroenergetycznych. Pomiary były przeprowadzone na potrzeby inwentaryzacji. Uzyskaną chmurę punktów przetworzono wykorzystując metodę Optimum Dataset (OptD). Celem było sprawdzenie czy punkty obrazujące linie elektroenergetyczną nie zostaną utracone w trakcie przetwarzania metodą OptD. W metodzie OptD jako kryterium optymalizacyjne przyjęto stopień redukcji czyli jaki procent punktów ma zostać usunięty z oryginalnego zbioru (p%). Badania przeprowadzono dla dwóch przypadków: 1) p%=70%, (zbiór Ω1) oraz 2) p%=85% (zbiór Ω2). Uzyskane wyniki pokazały, że metoda OptD nie zakłóca obrazu linii elektroenergetycznych. Liczba punktów obrazująca linie jest wystarczająca do prawidłowego wyznaczenia przebiegu tej linii.
Laser scanning is a technology that provides a large amount of measurement data in a relatively short time. It is both a positive and a negative feature of this technology. On the one hand, as a result of scanning, data is obtained that accurately reflects the measured object. On the other hand, it is difficult to process such a large amount of data, and not all of the data from the scanning is necessary to accomplish the selected task. For these reasons, works on developing algorithms to improve data processing are constantly conducted. One of the solution is to reduce the amount of data. The paper presents the results of data reduction from surveying of overhead power lines by means of ALS. The measurements were carried out for inventory purposes. The obtained point cloud was processed using the Optimum Dataset method (OptD). The aim was to check whether the points displaying the power lines will not be lost during the OptD processing. In the OptD method as the optimization criterion the degree of reduction was assumed. It is percentage of points which should be removed from the original dataset (p%). The research was carried out for two cases: 1) p% = 70%, (dataset Ω1) and 2) p% = 85% (dataset Ω2). The obtained results showed that the OptD method does not interfere with the image of power lines. The number of points displaying the lines is sufficient to correctly determine the course of this line.
Źródło:
Czasopismo Inżynierii Lądowej, Środowiska i Architektury; 2017, 64, 4/II; 319-330
2300-5130
2300-8903
Pojawia się w:
Czasopismo Inżynierii Lądowej, Środowiska i Architektury
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Use of parallel computing in mass processing of laser data
Zastosowanie obliczeń równoległych do masowego przetwarzania danych laserowych
Autorzy:
Będkowski, J.
Bratuś, R.
Prochaska, M.
Rzonca, A.
Powiązania:
https://bibliotekanauki.pl/articles/129799.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
parallel computing
laser scanning
lidar
data processing
obliczenia równoległe
skanowanie laserowe
LiDAR
przetwarzanie danych
Opis:
The first part of the paper includes a description of the rules used to generate the algorithm needed for the purpose of parallel computing and also discusses the origins of the idea of research on the use of graphics processors in large scale processing of laser scanning data. The next part of the paper includes the results of an efficiency assessment performed for an array of different processing options, all of which were substantially accelerated with parallel computing. The processing options were divided into the generation of orthophotos using point clouds, coloring of point clouds, transformations, and the generation of a regular grid, as well as advanced processes such as the detection of planes and edges, point cloud classification, and the analysis of data for the purpose of quality control. Most algorithms had to be formulated from scratch in the context of the requirements of parallel computing. A few of the algorithms were based on existing technology developed by the Dephos Software Company and then adapted to parallel computing in the course of this research study. Processing time was determined for each process employed for a typical quantity of data processed, which helped confirm the high efficiency of the solutions proposed and the applicability of parallel computing to the processing of laser scanning data. The high efficiency of parallel computing yields new opportunities in the creation and organization of processing methods for laser scanning data.
Publikacja ma na celu przedstawienie części wyników badań, jakie zrealizował zespół badawczy firmy Dephos Software w ramach projektu finansowanego przez UE pt. "Badania nad masowym przechowywaniem, udostępnianiem i przetwarzaniem przestrzennych danych laserowych". Na wstępie publikacji autorzy przedstawiają zasady organizacji algorytmu spełniającego wymogi obliczeń równoległych oraz przybliżają genezę pomysłu prowadzenia badań nad zastosowaniem procesorów graficznych do masowego przetwarzania danych skaningowych. Następnie autorzy prezentują wyniki oceny wydajności działania szeregu różnych procesów przetwarzania danych laserowych, które udało się zasadniczo przyspieszyć dzięki obliczeniom równoległym. Procesy te dzielą się na procesy podstawowe (generowanie ortoobrazów z chmur punktów, kolorowanie chmur punktów, transformacja, generowanie siatki regularnej) oraz procesy zaawansowane (wykrywanie płaszczyzn i krawędzi, klasyfikacja chmur punktów, analiza danych w celu kontroli jakości danych). W większości przypadków algorytmy musiały zostać opracowane całkowicie od nowa pod kątem wymogów przetwarzania równoległego, część korzysta z wcześniejszego dorobku technologicznego firmy Dephos Software, będąc dostosowana do równoległej metody obliczeń w ramach przeprowadzonych badań. W każdym z tych procesów określono czas działania dla typowej ilości danych przetwarzanych, co potwierdziło wysoką wydajność rozwiązań i sens zastosowania obliczeń równoległych w odniesieniu do danych skaningowych. Obliczenia równoległe dzięki swojej wysokiej wydajności otwierają nowe możliwości w tworzeniu i organizacji procesów przetwarzania danych pochodzących ze skaningu laserowego.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2015, 27; 45-59
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Problematyka pozyskiwania i przetwarzania danych fotogrametrycznych i z naziemnego skaningu laserowego na potrzeby tworzenia portali edukacyjnych i wirtualnych muzeów na przykładzie Katedry Wawelskiej
Issue of data acquisition and processing using short range photogrammetry and terrestrial laser scanning for educational portals and virtual museums based on Wawel Cathedral
Autorzy:
Mitka, B.
Szelest, P.
Powiązania:
https://bibliotekanauki.pl/articles/130778.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
skanowanie laserowe
przetwarzanie danych
muzeum wirtualne
portal edukacyjny
laser scanning
data processing
virtual museum
educational portal
Opis:
This paper presents the issues related to the acquisition and processing of terrestrial photogrammetry and laser scanning for building educational portals and virtual museums. Discusses the specific requirements of measurement technology and data processing for all kinds of objects, ranging from architecture through sculpture and architectural detail on the fabric and individual museum exhibits. Educational portals and virtual museums require a modern, high-quality visuals (3D models, virtual tours, animations, etc.) supplemented by descriptive content or audio commentary. Source for obtaining such materials are mostly terrestrial laser scanning and photogrammetry as technologies that provide complete information about the presented geometric objects. However, the performance requirements of web services impose severe restrictions on the presented content. It is necessary to use optimalization geometry process to streamline the way of its presentation. Equally important problem concerns the selection of appropriate technology and process measurement data processing presented for each type of objects. Only skillful selection of measuring equipment and data processing tools effectively ensure the achievement of a satisfactory end result. Both terrestrial laser scanning technology and digital close range photogrammetry has its strengths which should be used but also the limitations that must be taken into account in this kind of work. The key is choosing the right scanner for both the measured object and terrain such as pixel size in the performance of his photos.
Artykuł prezentuje problematykę związaną z pozyskiwaniem i przetwarzaniem danych fotogrametrycznych i z naziemnego skaningu laserowego na potrzeby tworzenia portali edukacyjnych i wirtualnych muzeów. Omówione zostały specyficzne wymagania, technologie pomiaru i przetwarzania danych dla różnego rodzaju obiektów, począwszy od architektury poprzez rzeźbę i detal architektoniczny po tkaniny i pojedyncze eksponaty muzealne. Portale edukacyjne i wirtualne muzea wymagają nowoczesnych, wysokiej jakości materiałów wizualnych (modele 3D, wirtualne wycieczki, animacje, itp.) uzupełnionych o treści opisowe lub komentarz audio. Źródłem pozyskania takich materiałów są najczęściej naziemny skaning laserowy i fotogrametria jako technologie które dostarczają kompletnej informacji geometrycznej o prezentowanych obiektach. Jednakże wymogi wydajnościowe serwisów internetowych nakładają poważne ograniczenia na prezentowane treści. Wymusza to, dla każdego rodzaju obiektów, zastosowania procesów optymalizacji geometrii i dostosowania sposobu jej prezentacji. Równie ważny problem dotyczy doboru odpowiedniej technologii pomiarowej i procesu obróbki danych dla każdego rodzaju prezentowanych obiektów. Tylko umiejętny dobór urządzeń pomiarowych i efektywne narzędzia przetwarzania danych zapewniają uzyskanie zadowalającego rezultatu końcowego. Zarówno technologia naziemnego skaningu laserowego jak i cyfrowa fotogrametria naziemna posiadają swoje atuty które należy odpowiednio wykorzystać ale również ograniczenia które muszą być brane pod uwagę przy tego rodzaju pracach. Kluczowy jest zarówno dobór odpowiedniego skanera dla mierzonego obiektu, jak i np. rozmiar terenowy piksela przy wykonywaniu jego zdjęć.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2013, 25; 107-115
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Realization and Verification of Data Conversion from Laser Scanner to FEM
Autorzy:
Sapietová, Alžbeta
Štalmach, Ondrej
Sága, Milan
Stančeková, Dana
Gajdoš, Lukáš
Powiązania:
https://bibliotekanauki.pl/articles/102571.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
3D laser scanner
data processing
CAD model
MeshLab
Ansys Workbench
skaner laserowy 3D
przetwarzanie danych
model CAD
Opis:
This paper deals with the data processing in the form of a point cloud scanned using a handheld 3D laser scanner. The aim of the paper was to use this data to create a representative FEM model and compare two different ap¬proaches, one them involved creating a CAD model and the other one did not. The data processing was carried out in the freeware systems MeshLab and Meshmixer and FEM analysis in the software ANSYS Workbench.
Źródło:
Advances in Science and Technology. Research Journal; 2020, 14, 1; 69-74
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies