Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Jankowski, N." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Graph-based generation of a meta-learning search space
Autorzy:
Jankowski, N.
Powiązania:
https://bibliotekanauki.pl/articles/330964.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
pozyskiwanie danych
maszyna ucząca się
inteligencja obliczeniowa
meta learning
data mining
learning machines
complexity of learning
complexity of learning machines
computational intelligence
Opis:
Meta-learning is becoming more and more important in current and future research concentrated around broadly defined data mining or computational intelligence. It can solve problems that cannot be solved by any single, specialized algorithm. The overall characteristic of each meta-learning algorithm mainly depends on two elements: the learning machine space and the supervisory procedure. The former restricts the space of all possible learning machines to a subspace to be browsed by a meta-learning algorithm. The latter determines the order of selected learning machines with a module responsible for machine complexity evaluation, organizes tests and performs analysis of results. In this article we present a framework for meta-learning search that can be seen as a method of sophisticated description and evaluation of functional search spaces of learning machine configurations used in meta-learning. Machine spaces will be defined by specially defined graphs where vertices are specialized machine configuration generators. By using such graphs the learning machine space may be modeled in a much more flexible way, depending on the characteristics of the problem considered and a priori knowledge. The presented method of search space description is used together with an advanced algorithm which orders test tasks according to their complexities.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 3; 647-667
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural methods of knowledge extraction
Autorzy:
Duch, W.
Adamczak, R.
Grąbczewski, K.
Jankowski, N.
Powiązania:
https://bibliotekanauki.pl/articles/206250.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
diagnostyka medyczna
optymalizacja
reguła logiczna
reguła rozmyta
wspomaganie decyzji
data mining
decision support
fuzzy rules
logical rules
medical diagnosis
optimization
Opis:
Contrary to the common opinion, neural networks may be used for knowledge extraction. Recently, a new methodology of logical rule extraction, optimization and application of rule-based systems has been described. C-MLP2LN algorithm, based on constrained multilayer perceptron network, is described here in details and the dynamics of a transition from neural to logical system illustrated. The algorithm handles real-valued features, determining appropriate linguistic variables or membership functions as a part of the rule extraction process. Initial rules are optimized by exploring the accuracy/simplicity tradeoff at the rule extraction stage and the one between reliability of rules and rejection rate at the optimization stage. Gaussian uncertainties of measurements are assumed during application of crisp logical rules, leading to "soft trapezoidal" membership functions and allowing to optimize the linguistic variables using gradient procedures. Comments are made on application of neural networks to knowledge discovery in the benchmark and real life problems.
Źródło:
Control and Cybernetics; 2000, 29, 4; 997-1017
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies