Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "fusion algorithm" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Complexity study of guaranteed state estimation for real time robot localization
Autorzy:
Seignez, E.
Lambert, A.
Powiązania:
https://bibliotekanauki.pl/articles/384760.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
autonomous robot
data fusion
localization
bounded error state estimation
algorithm
Opis:
The estimation of a vehicle configuration in its environment is mostly solved by Bayesian methods. Interval analysis allows an alternative approach: bounded-error localization. Such an approach provides a bounded set of configuration that is guaranteed to include the actual vehicle configuration. This paper describes the boundederror localization algorithms and presents their complexity study. A real time implementation of the studied algorithms is validated through the use of an experimental platform.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2011, 5, 2; 12-27
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multi-level health degree analysis of vehicle transmission system based on PSO-BP neural network data fusion
Autorzy:
Wu, Jianpeng
Cui, Jiahao
Shu, Yuechao
Wang, Yuxin
Chen, Ruihan
Wang, Liyong
Powiązania:
https://bibliotekanauki.pl/articles/24200805.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
vehicle transmission system
data fusion
PSO-BP algorithm
health degree
Opis:
In order to realize the evaluation of the vehicle transmission system health degree, a prediction model by multi-level data fusion method is established in this paper. The prediction model applies PSO(Particle Swarm Optimization)-BP(Back Propagation) neural network algorithm, calculates the whole machine health degree and each module respective weights from the test data. On this basis, it analyzes the error between the model calculated health degree and theoretical health degree. Then the research verifies the validity and prediction model accuracy. The health degree which is obtained by the single module feature parameters fusion, and the vehicle transmission system health degree is investigated, which is less effective compared to the three-level fusions. After that, by analyzing the vehicle transmission system multi-parameter feature weights, it is found that the mechanical module accounted for the largest damage rate, and the three modules influenced the vehicle transmission system health degree in the order of mechanical module, hydraulic module, and electric control module. The study has played a guiding role in the health management of complex equipment.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 1; art. no. 4
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dynamic location models of mobile sensors for travel time estimation on a freeway
Autorzy:
Sun, Weiwei
Shen, Liang
Shao, Hu
Liu, Pengjie
Powiązania:
https://bibliotekanauki.pl/articles/1838205.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
traffic mobile sensor
dynamic location model
travel time estimation
simulated annealing algorithm
data fusion
czujnik ruchu
model lokalizacji
szacowanie czasu podrózy
fuzja danych
Opis:
Travel time estimation for freeways has attracted much attention from researchers and traffic management departments. Because of various uncertain factors, travel time on a freeway is stochastic. To obtain travel time estimates for a freeway accurately, this paper proposes two traffic sensor location models that consider minimizing the error of travel time estimation and maximizing the collected traffic flow. First, a dynamic optimal location model of the mobile sensor is proposed under the assumption that there are no traffic sensors on a freeway. Next, a dynamic optimal combinatorial model of adding mobile sensors taking account of fixed sensors on a freeway is presented. It should be pointed out that the technology of data fusion will be adopted to tackle the collected data from multiple sensors in the second optimization model. Then, a simulated annealing algorithm is established to find the solutions of the proposed two optimization models. Numerical examples demonstrate that dynamic optimization of mobile sensor locations for the estimation of travel times on a freeway is more accurate than the conventional location model.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 2; 271--287
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies