Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Wójtowicz, P. A." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Multisensoryczny detektor upadków wykorzystujący dyskretną dekompozycję falkową oraz klasyfikator SVM
A multisensor fall detector using the discrete wavelet decomposition and SVM classifier
Autorzy:
Wójtowicz, B.
Dobrowolski, A. P.
Powiązania:
https://bibliotekanauki.pl/articles/154406.pdf
Data publikacji:
2014
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
detekcja upadków
fuzja sensoryczna
sieć wektorów podtrzymujących
fall detection
data fusion
support vector machine (SVM)
Opis:
W artykule zaprezentowano wyniki badań opracowanego mechanizmu detekcji upadków. Wysoką niezawodność oraz niski poziom fałszywych alarmów uzyskano w wyniku zastosowania czterech niezależnych sensorów różnych wielkości fizycznych oraz wyrafinowanych metod przetwarzania sygnałów i eksploracji danych. Przeprowadzone badania pozwalają na stwierdzenie, że pominięcie znaku deskryptorów znacznie poprawia skuteczność prawidłowej klasyfikacji upadków. Z tego powodu w dalszych pracach zostanie przyjęty algorytm wykorzystujący wartości bezwzględne wyznaczanych cech. W trakcie badań zaobserwowano, że zwiększanie liczby cech użytych w procesie uczenia oraz testowania nie prowadzi do zwiększenia jakości klasyfikacji. Wynika stąd potrzeba dobrania optymalnej liczby deskryptorów. Dlatego istotnym warunkiem poprawy skuteczności systemu jest przeprowadzenie właściwej selekcji cech, co jest głównym celem kolejnego etapu badań.
The paper presents the results of research on a fall detection algorithm. The high reliability and a low level of false alarms were obtained by the use of four independent sensors of various physical quantities as well as sophisticated methods of signal processing and data mining. The algorithm was implemented and tested in Matlab. It was based on the discrete wavelet transform and a support vectors machine. The source of the data was processed by the detector presented in [5, 6]. The device integrates four MEMS sensors. It includes an atmospheric pressure sensor and three triaxial sensors, such as an accelerometer, a gyroscope and a magnetometer. The signal from each of the available sensors was sampled at a frequency of 25 Hz. The processed and analyzed frame had the length of 100 samples, which equaled four-second registration. The scheme of the measurement system is shown in Figure 3. The obtained findings were the basis for the presentation of each sensor in the field of ROC curves in two variants (taking into account an extracted feature with the sign and with its omission). Definitely, better results were obtained using the absolute values of the descriptors in the process of learning/testing. The best results of fall detection were received for a gyroscope and an accelerometer, followed by a magnetometer and a barometric pressure sensor. From the studies one can draw a conclusion that the omission of the sign descriptors significantly improves the correct classification of falls. For this reason, in further work there will be adopted an algorithm using the absolute values of extracted features. During the study it was observed that the increase in the number of features used in learning and testing did not lead to the increase in the quality of classification. This calls for the selection of the optimum number of descriptors. Therefore, an important prerequisite to improve the efficiency of the system is a proper feature selection, which is the main objective of the next stage of investigations. In further research, we plan to implement the data fusion algorithm in order to increase the effectiveness of the mechanisms developed.
Źródło:
Pomiary Automatyka Kontrola; 2014, R. 60, nr 9, 9; 729-732
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Projekt integratora danych sensorycznych do detekcji niekontrolowanych upadków
Multisensor data integrator to detect uncontrolled falls
Autorzy:
Wójtowicz, B.
Dobrowolski, A. P.
Powiązania:
https://bibliotekanauki.pl/articles/209071.pdf
Data publikacji:
2013
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
detekcja upadków
fuzja sensoryczna
żyroskop
akcelerometr
magnetometr
czujnik ciśnienia
fall detection
data fusion
gyroscope
accelerometer
magnetometer
pressure sensor
Opis:
Co trzeci człowiek powyżej 65. roku życia przynajmniej raz do roku narażony jest na upadek [1, 2]. W roku 2002 z powodu upadków zmarło 391 tysięcy ludzi [1]. Upadki oraz urazy nimi spowodowane stanowią istotny problem zdrowia publicznego i często wymagają natychmiastowej pomocy medycznej. Bardzo szybka detekcja niekontrolowanego upadku pozwala na skrócenie czasu hospitalizacji, a przede wszystkim zmniejszenie potencjalnego ryzyka wystąpienia groźnych powikłań pourazowych. W niniejszym artykule zaprezentowano projekt bezprzewodowego urządzenia do detekcji niekontrolowanych upadków. Zaprojektowane urządzenie zaopatrzone jest w cztery sensory: żyroskop, akcelerometr, magnetometr oraz sensor ciśnienia. Dane z sensorów przetwarzane są w mikrokontrolerze, który w pierwszym etapie dokonuje operacji związanych z fuzją i integracją danych. Następnie w module decyzyjno-wnioskującym podejmowana jest decyzja o detekcji upadku i wyzwoleniu procedury alarmowej. Zgłoszenie alarmu odbywa się za pośrednictwem sieci bezprzewodowej, umożliwiającej podłączenie urządzenia do integratora sensorycznego, którym może być np. telefon komórkowy z dedykowaną aplikacją.
At least once a year every third person over 65 years of age is exposed to a fall [1, 2]. 391,000 people died due to falls in 2002 [1]. Falls and injuries caused by them are an important public health problem and often require immediate medical attention. Very fast detection of uncontrolled falls shortens the duration of hospitalization and reduces the potential risk of serious complications of injuries. This paper presents the design of a wireless device for the detection of uncontrolled falls. The device consists of four sensors: a gyroscope, an accelerometer, a magnetometer, and a pressure sensor. Data from the sensors are processed in the microcontroller, which performs the operations of data fusion and integration. The decision about the fall detection is made in the next step and if it is needed, it triggers an alarm. Alarm notification is sent via wireless network. The device can be connected to the sensor integrator, i.e. a mobile phone with the dedicated application, which can call for help.
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2013, 62, 4; 229-240
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Badania eksploatacyjne czterosensorowego detektora upadków
Inspection of four-sensor falls detector
Autorzy:
Wójtowicz, B.
Dobrowolski, A. P.
Powiązania:
https://bibliotekanauki.pl/articles/208393.pdf
Data publikacji:
2015
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
detekcja upadków
fuzja sensoryczna
dyskretna transformacja falkowa
sieć wektorów nośnych
falls detection
data fusion
discrete wavelet transform
support vector machine (SVM)
Opis:
Zaprezentowane w niniejszym artykule badania stanowią kontynuację dotychczasowych prac mających na celu opracowanie mobilnego detektora upadków. Przedstawiony algorytm opiera się na dyskretnej transformacji falkowej sygnałów z dostępnych w detektorze sensorów oraz pojedynczym klasyfikatorze w postaci sieci wektorów nośnych - SVM (ang. Support Vector Machine). Do procesu redukcji cech zastosowano miarę istotności Fishera. W wyniku zmniejszenia liczby cech zmniejszeniu uległa również liczba wektorów nośnych sieci SVM, mająca bezpośredni wpływ na górne oszacowanie błędu klasyfikacji. Na podstawie otrzymanych wyników wyznaczono parametry klasyfikatora pozwalające na zaprezentowanie opracowanej koncepcji w polu krzywych ROC (ang. Receiver Operating Characteristics) oraz porównanie ich z wynikami otrzymanymi dla pojedynczych sensorów detektora. Opracowana koncepcja daje zdecydowanie lepsze rezultaty niż każdy z sensorów działający niezależnie. Rezultaty przeprowadzonych badań dały bardzo dobre wyniki w porównaniu z dotychczasowymi wynikami, przy znacznej redukcji liczby wymaganych deskryptorów. Z uwagi na ścisłą zależność pomiędzy liczbą danych uczących oraz liczbą wektorów nośnych, które bezpośrednio wpływają na górne oszacowanie błędu klasyfikacji, dokonano redukcji deskryptorów. W rezultacie uzyskano zadowalające efekty przy redukcji liczby deskryptorów z 38 do zaledwie 6, zapewniając, że górne oszacowanie błędu klasyfikacji, w zbiorze nowych danych testowych nie przekracza 5,3%.
The studies presented in this article are the continuation of previous work to develop a mobile fall detector. The algorithm is based on a discrete wavelet transform of the signals from the sensors available at the detector and a linear support vector machine as a classifier. Fisher score method is used for feature selection in the proposed algorithm. As a result of reducing the number of features, the number of support vectors has been also reduced - it has a direct impact on the upper estimate of the classification error. On the basis of the obtained results, the classifier parameters have been calculated. This allows presenting the developed concept in the field of ROC curves (Receiver Operating Characteristics) and their comparison with the results obtained for individual sensors. The developed concept gives much better results than each of the sensors acting independently. The findings of this study have given very good results in comparison with the previous findings, with a significant reduction in the number of required features. Due to the close relationship between the number of training data and the number of support vectors which directly affect the upper estimate of the classification error, the number of features has been reduced. Finally, satisfactory results have been obtained with the reduction of the number of features from 38 to just six, ensuring that the upper estimation of the classification error in the set of the new test data does not exceed 5.3%.
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2015, 64, 2; 45-58
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies