Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "copula function" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Maintenance optimization for systems with dependent competing risks using a copula function
Optymalizacja eksploatacji dla systemów z zależnymi zagrożeniami konkurującymi przy wykorzystaniu funkcji kopuły
Autorzy:
Guo, Ch.
Wang, W.
Guo, B.
Peng, R.
Powiązania:
https://bibliotekanauki.pl/articles/301712.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
zależne ryzyka konkurujące
funkcja kopuły
dane symulowane
degradacja
zaburzenia losowe
optymalizacja eksploatacji
dependent competing risks
copula function
simulated data
degradation
random shocks
maintenance optimization
Opis:
This paper develops a joint copula reliability model for systems subjected to dependent competing risks caused by two degradation processes and random shocks. The two degradation processes follow gamma processes and the random shocks follow a non-homogeneous Poisson process (NHPP). Their interdependence relationship is modeled by a copula function, which is determined by a two-stage method based on simulated data. It is shown that the proposed model can provide more precise results than the model without considering the dependent relationship. Through the proposed reliability model, two maintenance models are studied and compared. It is found that the inspection cost has significant effects on the choosing of maintenance policy.
W niniejszej pracy opracowano wspólny model niezawodności z użyciem kopuły dla systemów poddawanych zależnym zagrożeniom konkurującym powodowanym przez dwa procesy degradacji i zaburzenia losowe. Owe dwa procesy degradacji reprezentują typ procesu gamma, podczas gdy zaburzenia losowe są typem niejednorodnego procesu Poissona (non-homogeneous Poisson process - NHPP). Ich związek wzajemnej zależności modelowany jest przy użyciu funkcji kopuły, która jest wyznaczana na podstawie dwuetapowej metody opartej o dane symulowane. Wykazano, iż proponowany model może zapewnić bardziej precyzyjne wyniki niż model, w którym nie ujęto związku zależności. W oparciu o proponowany model niezawodności, badane i porównywane są dwa modele eksploatacji. Stwierdzono, iż koszt przeglądu ma duży wpływ na wybór polityki eksploatacyjnej.
Źródło:
Eksploatacja i Niezawodność; 2013, 15, 1; 9-17
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reliability assessment for wind turbines considering the influence of wind speed using bayesian network
Ocena niezawodności turbin wiatrowych za pomocą sieci Bayesa z uwzględnieniem wpływu prędkości wiatru
Autorzy:
Su, Ch.
Fu, Y.
Powiązania:
https://bibliotekanauki.pl/articles/301828.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
zależne ryzyka konkurujące
funkcja kopuły
dane symulowane
degradacja
zaburzenia losowe
optymalizacja eksploatacji
dependent competing risks
copula function
simulated data
degradation
random shocks
maintenance optimization
Opis:
Niezawodność turbiny wiatrowej ma ogromne znaczenie dla gotowości i efektywności ekonomicznej instalacji wiatrowej. W niniejszym artykule zbudowano, w oparciu o sieci Bayesa (BN), model niezawodności turbiny wiatrowej uwzględniający wpływ prędkości wiatru. Przedstawiono Metodę Logiki Przyczynowości (Causal Logic Method, CLM), służącą do modelowania jakościowego, która łączy zalety drzewa błędów w odniesieniu do aspektów technicznych z atutami BN w odniesieniu do czynników środowiskowych i niepewności. Do kalkulacji ilościowych zaproponowano nową metodę dopasowania opartą na oczekiwaniach, w której dane z eksploatacji i opinie ekspertów łącznie pozwalają opisać niepewność rozkładów prawdopodobieństwa a priori. Wskaźnik niezawodności turbiny wiatrowej i jej elementów otrzymano posługując się algorytmem wnioskowania przybliżonego w połączeniu z dynamiczną dyskretyzacją zmiennych ciągłych. Dla zilustrowania proponowanej metody przedstawiono studium przypadku, którego wyniki wskazują, że prędkość wiatru jest ważnym czynnikiem niezawodności turbiny wiatrowej.
The reliability of wind turbine is of great importance for the availability and economical efficiency of wind power system. In this article, a reliability model for wind turbine is built with Bayesian network (BN), in which the influence of wind speed is considered. Causal logic method (CLM) is presented for qualitative modeling, which combines the merits of fault tree in handling technical aspects and the strength of BN in dealing with environmental factors and uncertainty. A novel adjustment method based on expectation is proposed for quantitative calculation, by which historical data and expert judgment are integrated to describe the uncertainty in the prior probability distributions. An approximate inference algorithm combining with dynamic discretization of continuous variables is adopted to obtain the reliability index of wind turbine and its elements. A case study is given to illustrate the proposed method, and the results indicate that wind speed is an important factor for the reliability of wind turbine.
Źródło:
Eksploatacja i Niezawodność; 2014, 16, 1; 1-8
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies