- Tytuł:
-
Aproksymacja stężeń zanieczyszczeń powietrza za pomocą neuronowych modeli szeregów czasowych
Aproximation of air monitoring data gaps by means of time-series neural models - Autorzy:
- Hoffman, S.
- Powiązania:
- https://bibliotekanauki.pl/articles/297640.pdf
- Data publikacji:
- 2009
- Wydawca:
- Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
- Tematy:
-
szereg czasowy
modele neuronowe
stężenia chwilowe
dane monitoringu
brakujące dane
luki pomiarowe
aproksymacja
time series
neural models
air pollution
air monitoring
hourly concentrations
monitoring data
missing data
measure gaps
approximation - Opis:
-
W pracy oceniono możliwości aproksymacji stężeń zanieczyszczeń mierzonych na stacjach monitoringu powietrza. Do predykcji stężeń wykorzystano neuronowe modele szeregów czasowych. Jakość modelowania testowano na rzeczywistych danych pochodzących ze stacji monitoringu powietrza Łódź-Widzew, zarejestrowanych w latach 2004-2008. Analizie poddano względnie kompletny zbiór danych, obejmujący stężenia 6 podstawowych zanieczyszczeń powietrza: O3, NO2, NO, PM10, SO2, CO. Celem badawczym było określenie i porównanie dokładności predykcji stężeń różnych zanieczyszczeń powietrza. Modelowanie przeprowadzono, stosując sztuczne sieci neuronowe. Trening sieci odbywał się przy użyciu liniowego algorytmu pseudoinwersji. Wyjściem modelu było stężenie wybranego zanieczyszczenia w określonym czasie. Wejściami były wartości stężeń zarejestrowane w godzinach wcześniejszych. Każdy model charakteryzowały dwie wielkości: horyzont prognozy i liczba wartości opóźnionych. W analizie określono dokładność predykcji stężeń wybranych zanieczyszczeń dla stałej liczby wartości opóźnionych równej 24 przy zmieniającym się horyzoncie prognozy od 1 do 240 godz. Jako kryterium jakości modelowania przyjęto wartość błędu aproksymacji.
An assessment of quality of air pollutants concentration modeling was the main research purpose. The examination was made by means of artificial neural networks, which were employed to create time-series models. The quality of approximation was tested on the actual set of air monitoring data, gathered over a 5-year period at the measure site in Lodz-Widzew (Central Poland). The examined time-series involved hourly concentrations of main air pollutants: O3, NO2, NO, PM10, SO2, CO. The research aim was the estimation and the comparison of prediction accuracy for different air pollutants. Time-series models were characterized by two parameters which might influence the prediction quality: lookahead and steps. For all models the constant number of steps equal 24 hours was assumed. The effect of changes of lookahead in the range 1÷ 240 hours was analyzed. It was stated that the decreasing of precision of time-series models with the increase of lookahead is observed. The drop of accuracy depends on pollutant. The furthest reasonable prognosis may be done for ozone concentration. Approximation accuracy shortens in the order: O3, CO, SO2, PM10, NO2, NO. - Źródło:
-
Inżynieria i Ochrona Środowiska; 2009, 12, 3; 231-239
1505-3695
2391-7253 - Pojawia się w:
- Inżynieria i Ochrona Środowiska
- Dostawca treści:
- Biblioteka Nauki