Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "manufacturing systems" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Role of ontologies for CPS implementation in manufacturing
Autorzy:
Garetti, M.
Fumagalli, L.
Negri, E.
Powiązania:
https://bibliotekanauki.pl/articles/406924.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
cyber-physical systems
CPS
ontology
advanced manufacturing
Opis:
Cyber Physical Systems are an evolution of embedded systems featuring a tight combination of collaborating computational elements that control physical entities. CPSs promise a great potential of innovation in many areas including manufacturing and production. This is because we obtain a very powerful, flexible, modular infrastructure allowing easy (re) configurability and fast ramp-up of manufacturing applications by building a manufacturing system with modular mechatronic components (for machining, transportation and storage) and embedded intelligence, by integrating them into a system, through a network connection. However, when building such kind of architectures, the way to supply the needed domain knowledge to real manufacturing applications arises as a problem to solve. In fact, a CPS based architecture for manufacturing is made of smart but independent manufacturing components without any knowledge of the role they have to play together in the real world of manufacturing applications. Ontologies can supply such kind of knowledge, playing a very important role in CPS for manufacturing. The paper deals with this intriguing theme, also presenting an implementation of this approach in a research project for the open automation of manufacturing systems, in which the power of CPS is complemented by the support of an ontology of the manufacturing domain.
Źródło:
Management and Production Engineering Review; 2015, 6, 4; 26-32
2080-8208
2082-1344
Pojawia się w:
Management and Production Engineering Review
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Integration of Advanced Monitoring in Manufacturing Systems
Autorzy:
Oborski, P.
Powiązania:
https://bibliotekanauki.pl/articles/99709.pdf
Data publikacji:
2015
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Tematy:
integrated monitoring system
manufacturing
multiagent systems
cyber-physical systems
shop floor control
Opis:
Novel concept of monitoring systems integration, reference models and test application for manufacturing are presented in the paper. Research results are an answer for industry needs for development of IT solutions that will allow to integrate information flow in production systems. The idea of standalone advanced monitoring devices connection with Shop Floor Control, MRP/ERP and machine operators is discussed. The concept of monitoring systems integration has been formally described by reference models. They corresponds with original multilayer data structure proposed on the base of data tree. Data model allows to describe orders, products, processes and to save monitoring results. Both kind of models has been the base for implementation of the integrated monitoring system demonstrator. The demonstrator developed in the frame of research was built on the base of multiagent technology. It allows to keep high flexibility and openness of the system, as well as easy implementation of various intelligent algorithms for data processing. Currently, an application of integrated monitoring system for real production system is developed. The main problems and future development of monitoring integration in discrete production are presented and discussed in the article.
Źródło:
Journal of Machine Engineering; 2015, 15, 2; 55-68
1895-7595
2391-8071
Pojawia się w:
Journal of Machine Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Machine Learning in Cyber-Physical Systems and manufacturing singularity – it does not mean total automation, human is still in the centre: Part II – In-CPS and a view from community on Industry 4.0 impact on society
Autorzy:
Putnik, Goran D.
Shah, Vaibhav
Putnik, Zlata
Ferreira, Luis
Powiązania:
https://bibliotekanauki.pl/articles/1428709.pdf
Data publikacji:
2021
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Tematy:
human role
artificial intelligence
machine learning
manufacturing singularity
intelligent machine architecture
cyber-physical systems
Industry 4.0
Opis:
In many discourses, popular as well as scientific, it is suggested that the "massive" use of Artificial Intelligence (AI), including Machine Learning (ML), and reaching the point of "singularity" through so-called Artificial General Intelligence (AGI), and Artificial Super-Intelligence (ASI), will completely exclude humans from decision making, resulting in total dominance of machines over human race. Speaking in terms of manufacturing systems, it would mean that the intelligence and total automation would be achieved (once the humans are excluded). The hypothesis presented in this paper is that there is a limit of AI/ML autonomy capacity, and more concretely, the ML algorithms will be not able to become totally autonomous and, consequently, the human role will be indispensable. In the context of the question, the authors of this paper introduce the notion of the manufacturing singularity and present an intelligent machine architecture towards the manufacturing singularity, arguing that the intelligent machine will always be human dependent. In addition, concerning the manufacturing, the human will remain in the centre of Cyber-Physical Systems (CPS) and in Industry 4.0. The methodology to support this argument is inductive, similarly to the methodology applied in a number of texts found in literature, and based on computational requirements of inductive inference based machine learning. The argumentation is supported by several experiments that demonstrate the role of human within the process of machine learning. Based on the exposed considerations, a generic architecture of intelligent CPS, with embedded ML functional modules in multiple learning loops, is proposed in order to evaluate way of use of ML functionality in the context of CPS. Similar to other papers found in literature, due to the (informal) inductive methodology applied, considering that this methodology does not provide an absolute proof in favour of, or against, the hypothesis defined, the paper represents a kind of position paper. The paper is divided into two parts. In the first part a review of argumentation from literature in favour of and against the thesis on the human role in future was presented, as well as the concept of the manufacturing singularity was introduced. Furthermore, an intelligent machine architecture towards the manufacturing singularity was proposed, arguing that the intelligent machine will be always human dependent and, concerning the manufacturing, the human will remain in the centre. The argumentation is based on the phenomenon related to computational machine learning paradigm, as intrinsic feature of the AI/ML1, through the inductive inference based ML algorithms, whose effectiveness is conditioned by the human participation. In the second part, an architecture of the Cyber-Physical (Production) Systems (CPPS) with multiple learning loops is presented, together with a set of experiments demonstrating the indispensable human role. Finally, a discussion of the problem from the manufacturing community point of view on future of human role in Industry 4.0 as the environment for advanced AI/ML applications is registered.
Źródło:
Journal of Machine Engineering; 2021, 21, 1; 133-153
1895-7595
2391-8071
Pojawia się w:
Journal of Machine Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forth Industrial Revolution (4 IR): Digital Disruption of Cyber – Physical Systems
Autorzy:
Kasza, Joanna
Powiązania:
https://bibliotekanauki.pl/articles/1058063.pdf
Data publikacji:
2019
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Forth Industrial Revolution (4IR)
H2M (human to machine) communication
Industrial Internet of Things (IIOT)
Industry 4.0
Internet of Things (IOT)
M2H (machine to human)
M2M (machine to machine)
SMAC (social
Smart Manufacturing
analytics and cloud)
artificial intelligence (AI)
cyber-physical systems
digital disruption (disruptive innovations)
infosphere
mobile
pervasive computing
philosophy of information
semantic web
symbiotic and ubiquitous web
Opis:
Article focus of the disruptive character of technological innovations brought by Fourth Industrial Revolution (4IR), with its unprecedented scale and scope, and exponential speed of incoming innovations, described from the point view of ‘unintended consequences’ (cross cutting impact of disruptive technologies across many sectors and aspects of human life). With integration of technology innovations emerging in number of fields including advanced robotics, pervasive computing, artificial intelligence, nano- and bio- technologies, additive and smart manufacturing, Forth Industrial Revolution introduce new ways in which technology becomes embedded not only within the society, economy and culture, but also within human body and mind (described by integration of technologies, collectively referred to as cyber-physical systems). At the forefront of digital transformation, based on cyber physical systems, stands Industry 4.0, referring to recent technological advances, where internet and supporting technologies (embedded systems) are serving as framework to integrate physical objects, human actors, intelligent machines, production lines and processes across organizational boundaries to form new kind of intelligent, networked value chain, called smart factory. Article presents broader context of ‘disruptive changes (innovations)’ accompanying 4IR, that embrace both economical perspective of ‘broader restructuring’ of modern economy and society (described in second part of the article as transition from second to third and forth industrial revolution), and technological perspective of computer and informational science with advances in pervasive computing, algorithms and artificial intelligence (described in third part of article with different stages of web development : web 1.0, web 2.0, web 3.0, web 4.0). What’s more important, article presents hardly ever described in literature, psychological and philosophical perspective, more or less subtle reconfiguration made under the influence of these technologies, determining physical (body), psychological (mind) and philosophical aspect of human existence (the very idea of what it means to be the human), fully depicted in the conclusion of the article. The core element (novelty) is the attempt to bring full understanding and acknowledgment of disruptive innovations’, that “change not only of the what and the how things are done, but also the who we are”, moving beyond economical or technological perspective, to embrace also psychological and philosophical one.
Źródło:
World Scientific News; 2019, 134, 2; 118-147
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies