Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Fouquet, Jean-Luc" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
On normal partitions in cubic graphs
Autorzy:
Fouquet, Jean-Luc
Vanherpe, Jean-Marie
Powiązania:
https://bibliotekanauki.pl/articles/743177.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
cubic graph
edge-partition
Opis:
A normal partition of the edges of a cubic graph is a partition into trails (no repeated edge) such that each vertex is the end vertex of exactly one trail of the partition. We investigate this notion and give some results and problems.
Źródło:
Discussiones Mathematicae Graph Theory; 2009, 29, 2; 293-312
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On Fulkerson conjecture
Autorzy:
Fouquet, Jean-Luc
Vanherpe, Jean-Marie
Powiązania:
https://bibliotekanauki.pl/articles/743867.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
cubic graph
perfect matchings
Opis:
If G is a bridgeless cubic graph, Fulkerson conjectured that we can find 6 perfect matchings (a Fulkerson covering) with the property that every edge of G is contained in exactly two of them. A consequence of the Fulkerson conjecture would be that every bridgeless cubic graph has 3 perfect matchings with empty intersection (this problem is known as the Fan Raspaud Conjecture). A FR-triple is a set of 3 such perfect matchings. We show here how to derive a Fulkerson covering from two FR-triples. Moreover, we give a simple proof that the Fulkerson conjecture holds true for some classes of well known snarks.
Źródło:
Discussiones Mathematicae Graph Theory; 2011, 31, 2; 253-272
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On a family of cubic graphs containing the flower snarks
Autorzy:
Fouquet, Jean-Luc
Thuillier, Henri
Vanherpe, Jean-Marie
Powiązania:
https://bibliotekanauki.pl/articles/744266.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
cubic graph
perfect matching
strong matching
counting
hamiltonian cycle
2-factor hamiltonian
Opis:
We consider cubic graphs formed with k ≥ 2 disjoint claws $C_i ~ K_{1,3}$ (0 ≤ i ≤ k-1) such that for every integer i modulo k the three vertices of degree 1 of $C_i$ are joined to the three vertices of degree 1 of $C_{i-1}$ and joined to the three vertices of degree 1 of $C_{i+1}$. Denote by $t_i$ the vertex of degree 3 of $C_i$ and by T the set ${t₁,t₂,...,t_{k-1}}$. In such a way we construct three distinct graphs, namely FS(1,k), FS(2,k) and FS(3,k). The graph FS(j,k) (j ∈ {1,2,3}) is the graph where the set of vertices $⋃_{i = 0}^{i = k-1} V(C_i)∖T$ induce j cycles (note that the graphs FS(2,2p+1), p ≥ 2, are the flower snarks defined by Isaacs [8]). We determine the number of perfect matchings of every FS(j,k). A cubic graph G is said to be 2-factor hamiltonian if every 2-factor of G is a hamiltonian cycle. We characterize the graphs FS(j,k) that are 2-factor hamiltonian (note that FS(1,3) is the "Triplex Graph" of Robertson, Seymour and Thomas [15]). A strong matching M in a graph G is a matching M such that there is no edge of E(G) connecting any two edges of M. A cubic graph having a perfect matching union of two strong matchings is said to be a Jaeger's graph. We characterize the graphs FS(j,k) that are Jaeger's graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2010, 30, 2; 289-314
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies