- Tytuł:
- Diophantine equations and class number of imaginary quadratic fields
- Autorzy:
-
Cao, Zhenfu
Dong, Xiaolei - Powiązania:
- https://bibliotekanauki.pl/articles/728808.pdf
- Data publikacji:
- 2000
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
Diophantine equation
imaginary quadratic field
class number
cryptographic problem - Opis:
- Let A, D, K, k ∈ ℕ with D square free and 2 ∤ k,B = 1,2 or 4 and $μ_{i} ∈ {-1,1}(i = 1,2)$, and let $h(-2^{1-e}D)(e = 0 or 1)$ denote the class number of the imaginary quadratic field $ℚ(√(-2^{1-e}D))$. In this paper, we give the all-positive integer solutions of the Diophantine equation Ax² + μ₁B = K((Ay² + μ₂B)/K)ⁿ, 2 ∤ n, n > 1 and we prove that if D > 1, then $h(-2^{1-e}D) ≡ 0 (mod n)$, where D, and n satisfy $kⁿ - 2^{e+1} = Dx²$, x ∈ ℕ, 2 ∤ n, n > 1. The results are valuable for the realization of quadratic field cryptosystem.
- Źródło:
-
Discussiones Mathematicae - General Algebra and Applications; 2000, 20, 2; 199-206
1509-9415 - Pojawia się w:
- Discussiones Mathematicae - General Algebra and Applications
- Dostawca treści:
- Biblioteka Nauki