Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "coefficient bounds" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Uniformly convex functions II
Autorzy:
Ma, Wancang
Minda, David
Powiązania:
https://bibliotekanauki.pl/articles/1311788.pdf
Data publikacji:
1993
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
convex functions
coefficient bounds
Opis:
Recently, A. W. Goodman introduced the class UCV of normalized uniformly convex functions. We present some sharp coefficient bounds for functions f(z) = z + a₂z² + a₃z³ + ... ∈ UCV and their inverses $f^{-1}(w) = w + d₂w² + d₃w³ + ...$. The series expansion for $f^{-1}(w)$ converges when $|w| < ϱ_f$, where $0 < ϱ_f$ depends on f. The sharp bounds on $|a_n|$ and all extremal functions were known for n = 2 and 3; the extremal functions consist of a certain function k ∈ UCV and its rotations. We obtain the sharp bounds on $|a_n|$ and all extremal functions for n = 4, 5, and 6. The same function k and its rotations remain the only extremals. It is known that k and its rotations cannot provide the sharp bound on $|a_n|$ for n sufficiently large. We also find the sharp estimate on the functional |μa²₂ - a₃| for -∞ < μ < ∞. We give sharp bounds on $|d_n|$ for n = 2, 3 and 4. For $n = 2, k^{-1}$ and its rotations are the only extremals. There are different extremal functions for both n = 3 and n = 4. Finally, we show that k and its rotations provide the sharp upper bound on |f''(z)| over the class UCV.
Źródło:
Annales Polonici Mathematici; 1993, 58, 3; 275-285
0066-2216
Pojawia się w:
Annales Polonici Mathematici
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On uniformly convex functions
Autorzy:
Goodman, A.
Powiązania:
https://bibliotekanauki.pl/articles/1312377.pdf
Data publikacji:
1991
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
univalent functions
convex functions
coefficient bounds
Opis:
We introduce a new class of normalized functions regular and univalent in the unit disk. These functions, called uniformly convex functions, are defined by a purely geometric property. We obtain a few theorems about this new class and we point out a number of open problems.
Źródło:
Annales Polonici Mathematici; 1991-1992, 56, 1; 87-92
0066-2216
Pojawia się w:
Annales Polonici Mathematici
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Uniformly convex functions
Autorzy:
Ma, Wancang
Minda, David
Powiązania:
https://bibliotekanauki.pl/articles/1312032.pdf
Data publikacji:
1992
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
convex functions
growth and distorsion theorems
coefficient bounds
Opis:
Recently, A. W. Goodman introduced the geometrically defined class UCV of uniformly convex functions on the unit disk; he established some theorems and raised a number of interesting open problems for this class. We give a number of new results for this class. Our main theorem is a new characterization for the class UCV which enables us to obtain subordination results for the family. These subordination results immediately yield sharp growth, distortion, rotation and covering theorems plus sharp bounds on the second and third coefficients. We exhibit a function k in UCV which, up to rotation, is the sole extremal function for these problems. However, we show that this function cannot be extremal for the sharp upper bound on the nth coefficient for all n. We establish this by obtaining the correct order of growth for the sharp upper bound on the nth coefficient over the class UCV and then demonstrating that the nth coefficient of k has a smaller order of growth.
Źródło:
Annales Polonici Mathematici; 1992, 57, 2; 165-175
0066-2216
Pojawia się w:
Annales Polonici Mathematici
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies