Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "simulation of a container terminal" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Simulation of a Container Terminal and it’s Reflect on Port Economy
Autorzy:
Elentably, A.
Powiązania:
https://bibliotekanauki.pl/articles/116308.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
container terminal
port economy
simulation of a container terminal
discrete event simulation (DES)
port simulation software (PORTSIM)
handling equipment
mobile harbour crane (MHC)
gantry crane (GC)
Opis:
The combination between the design and project of container terminals and the reflect on port’s economy may be carried out through two main approaches: optimization or simulation. Although the approaches based on optimization models allow a more elegant and compact formulation of the problem, simulation models are mainly based on discrete event simulation (DES) models and help to achieve several aims: then measure this impact on port economy before and after implemented this updating overcome mathematical limitations of optimization approaches, support and make computer-generated strategies/policies more understandable, and support decision makers in daily decision processes through a “what if” approach. Several applications of DES models have been proposed and simulation results confirm that such an approach is quite effective at simulating container terminal operations. Most of the contributions in the literature develop object oriented simulation models and pursue a macroscopic approach which gathers elementary handling activities (e.g. using cranes, reach stackers, shuttles) into a few macro-activities (e.g. unloading vessels: crane-dock-reach stacker-shuttle-yard), simulate the movement of an “aggregation” of containers and therefore do not take into account the effects of container types (e.g. 20’ vs 40’, full vs empty), the incidence of different handling activities that may seem similar but show different time duration and variability/dispersion (e.g. crane unloading a container to dock or to a shuttle) and the differences within the same handling activity (e.g. stacking/loading/unloading time with respect to the tier number). Such contributions primarily focus on modeling architecture, on software implementation issues and on simulating design/real scenarios. Activity duration is often assumed to be deterministic, and those few authors that estimate specific stochastic handling equipment models do not clearly state how they were calibrated, what data were used and what the parameter Values are. Finally, no one investigates the effects of different modeling hypotheses on the simulation of container terminal performances. The focus of this paper is on the effects that different hypotheses on handling equipment models calibration may have on the simulation (discrete event) of container terminal performances. Such effects could not be negligible and should be investigated with respect to different planning horizons, such as strategic or tactical. The aim is to propose to analysts, modelers and practitioners a sort of a guideline useful to point out the strengths or weaknesses of different approaches. Drawing on the model architecture which will be affected on port economics.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2016, 10, 2; 331-337
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Simulation Model of Container Land Terminals
Autorzy:
Kuznetsov, A. L.
Kirichenko, A. V.
Eglit, J. J.
Powiązania:
https://bibliotekanauki.pl/articles/116236.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
marine simulations
simulation model
container land terminals
container terminal
transport infrastructure
object-oriented model
terminal simulation
container
Opis:
The simulation as a tool for the design of port and terminals has emerged as an answer for the demand to enhance the quality and reliability of the project results. Very high costs of the project solution implementation and practically total lack of liquidity of transport infrastructure objects always induced the immense commercial risks in the terminal business. Lately these risks have multiplied significantly due to rapid changes on the global and regional markets of transport services. Today, many experts come to see this volatility as an indicator of the next phase in development of the global trade system and the derivative cargo transportation system, specifically the state of temporal saturation. The shift of the global goods volumes from quick and steady growth to relatively small fluctuations around constant values causes quick oscillations in re-distribution of demand over the oversized supply. This new business and economic environment seriously affected the paradigm of transport terminal design and development techniques. The new operational environment of terminals put a request for the designers to arrange the results not in terms of “point”, but in terms of “functions”. Eventually it resulted in development of the modern object-oriented model approach. The wide spread of this approach witnesses the objective demand for this discipline, while in many aspects it remains in the intuitive (pre-paradigmal) phase of its development. The main reason for it is in the problem definition itself, which usually is formulated as the simulation of a given terminal. At the same time, the task is to assess the operational characteristics of the terminal engaged in processing of a given combination of cargo flows. Consequently, it is not the terminal that should be simulated, but the processes of cargo flows handling performed by this terminal under investigation. Another problem that restricts the practical spread of simulation is in the model adequacy. A model which adequacy is not proved has no gnoseological value at all. The paper describes the approach aimed at development of the models with the features discussed above.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2018, 12, 2; 321-326
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies