Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Adamska, K." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Wskaźnik krzywizny uziarnienia a parametry zagęszczalności gruntów niespoistych o dwumodalnych rozkładach uziarnienia
Coefficient of curvature and compaction parameters for non-cohesive soils with bimodal grain size distribution
Autorzy:
Patakiewicz, M.A.
Zabielska-Adamska, K.
Powiązania:
https://bibliotekanauki.pl/articles/40137.pdf
Data publikacji:
2013
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Tematy:
geotechnika
grunty niespoiste
uziarnienie
rozklad uziarnienia
wskaznik krzywizny uziarnienia
zageszczalnosc
geotechnics
uncohesive ground
soil graining
grain size distribution
curvature rate
compactibility
Opis:
W artykule przeprowadzono analizę wpływu uziarnienia gruntów niespoistych o nieciągłych (dwumodalnych) rozkładach uziarnienia na ich zagęszczalność. Zdolność do zagęszczania gruntów niespoistych zwykle oceniana jest na podstawie wskaźnika jednorodności uziarnienia (CU) lub łącznie na podstawie dwóch wskaźników uziarnienia − CU i wskaźnika krzywizny uziarnienia (CC). W przypadku gruntów o nieciągłych rozkładach uziarnienia wartości wskaźnika CC przeważnie są mniejsze od 0,5. Grunty te klasyfi - kowane są poza grupą gruntów dobrze zagęszczalnych – jako grunty źle uziarnione. Wyniki analiz prowadzonych z wykorzystaniem wskaźnika kształtu krzywej zagęszczalności (IC) wskazują, iż grunty o nieciągłych rozkładach uziarnienia – mimo niskich wskaźników krzywizny uziarnienia (CC) – mogą być uważane jako grunty dobrze zagęszczalne.
The impact of non-cohesive soil graining with bimodal grain-size distribution on its compaction was analyzed in the paper. Ability to compaction of non-cohesive soils is usually estimated on the basis of coeffi cient of uniformity (CU) or jointly two graining coeffi cients − CU and coeffi cient of curvature (CC). In the case of soils with discontinuous grain-size distribution values of coeffi cient of curvature CC are more often lower than 0.5. Those soils are classifi ed outside the well-compacted soils, as poorly graded soils. Results of the analyses carried out with the index of compaction curve shape IC indicate that soils with discontinuous grain-size distribution – despite the low values of coeffi cient of curvature (CC) – can be considered as well-compacted soils.
Źródło:
Acta Scientiarum Polonorum. Architectura; 2013, 12, 3
1644-0633
Pojawia się w:
Acta Scientiarum Polonorum. Architectura
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
ANN-based modeling of fly ash compaction curve
Modelowanie krzywej zagęszczalności popiołu lotnego za pomocą SSN
Autorzy:
Zabielska-Adamska, K.
Sulewska, M. J.
Powiązania:
https://bibliotekanauki.pl/articles/231108.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
krzywa zagęszczalności
popiół lotny
zagęszczalność
parametr zagęszczalności
parametr geotechniczny
sieć neuronowa sztuczna
modelowanie numeryczne
ANN
compaction curve
fly ash
compactibility
compaction parameter
geotechnical parameter
artificial neural network
numerical modeling
SSN
Opis:
The use of fly ash as a material for earth structures involves its proper compaction. Fly ash compaction tests have to be conducted on separately prepared virgin samples because spherical ash grains are crushed during compaction, so the laboratory compaction procedure is time-consuming and laborious. The aim of the study was to determine the neural models for prediction of fly ash compaction curve shapes. The attempt of applying the artificial neural networks type MLP was made. ANN inputs were new-created variables - principal components dependent on grain-size distribution (as D10-D90 and uniformity and curvature coefficients), compaction method, and fly ash specific density. The output vectors were presented by coordinates of generated compaction curve points. Each point was described by two independent ANNs. Using ANN-based modelling method, models which enable establishing the approximate compaction curve shape were obtained.
Wykorzystanie popiołu lotnego do konstrukcji ziemnych wymaga jego właściwego zagęszczenia. Zagęszczanie powoduje wzrost gęstości gruntu, zwiększa jego wytrzymałość i zdolność do przenoszenia obciążeń, a także zmniejsza ściśliwość i przepuszczalność. Oznaczenie zagęszczalności popiołu lotnego musi być przeprowadzane na próbkach jednokrotnie zagęszczanych, ponieważ sferyczne ziarna popiołu są niszczone w trakcie ubijania, w związku z tym, laboratoryjne ustalenie krzywej zagęszczalności popiołu jest bardzo czasochłonne. Celem artykułu było wykorzystanie modelowania neuronowego do prognozy kształtu krzywej zagęszczalności popiołu lotnego. Podjęto próbę zastosowania sztucznych sieci neuronowych SSN typu MLP do opisu punktów krzywej zagęszczalności. Każdy punkt krzywej został opisany przez dwie niezależne SSN. Wykorzystano SSN o różnych wejściach, którymi były nowo utworzone zmienne- składowe główne, zależne od uziarnienia (średnic efektywnych d10-d90 oraz wskaźników jednorodności i krzywizny uziarnienia), metody zagęszczenia oraz gęstości właściwej szkieletu gruntowego pdi. Wektorami wyjścia były współrzędne punktów krzywej zagęszczalności popiołu lotnego. Najlepszymi sieciami neuronowymi były sieci o topologii: 6-3-1, 6-2-1 i 6-4-1 dla prognozy wartości wilgotności wi, oraz 5-3-1 i 6-3-1 dla predykcji wartości gęstości objętościowej szkieletu gruntowego. Uzyskano sieci neuronowe o zadowalającej precyzji, szczególnie w przypadku wartości pdi. Modelowanie krzywej za pomocą SSN umożliwiło ustalenie przybliżonego kształtu krzywej zagęszczalności popiołu lotnego.
Źródło:
Archives of Civil Engineering; 2012, 58, 1; 57-69
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies