Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "iteration process" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces
Autorzy:
Saluja, G. S.
Nashine, H. K.
Powiązania:
https://bibliotekanauki.pl/articles/255521.pdf
Data publikacji:
2010
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
implicit iteration process
finite family of asymptotically quasi-nonexpansive mappings
common fixed point
convex metric space
Opis:
In this paper, we give some necessary and sufficient conditions for an implicit iteration process with errors for a finite family of asymptotically quasi-nonexpansive mappings converging to a common fixed of the mappings in convex metric spaces. Our results extend and improve some recent results of Sun, Wittmann, Xu and Ori, and Zhou and Chang.
Źródło:
Opuscula Mathematica; 2010, 30, 3; 331-340
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the construction of common fixed points for semigroups of nonlinear mappings in uniformly convex and uniformly smooth Banach spaces
Autorzy:
Kozlowski, W.M.
Powiązania:
https://bibliotekanauki.pl/articles/746293.pdf
Data publikacji:
2012
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
common fixed point
Fixed point
Lipschitzian mapping
pointwise Lipschitzian mapping
semigroup of mappings
asymptotic pointwise nonexpansive mapping
uniformly convex Banach space
uniformly smooth Banach space
Fréchet differentiable norm
weak compactness
fixed point iteration process
Krasnosel'skii-Mann process
Mann process
Ishikawa process
Opis:
Let \(C\) be a bounded, closed, convex subset of a uniformly convex and uniformly smooth Banach space \(X\). We investigate the weak convergence of the generalized Krasnosel'skii-Mann and Ishikawa iteration processes to common fixed points of semigroups of nonlinear mappings \(T_t\colon C \to C\). Each of \(T_t\) is assumed to be pointwise Lipschitzian, that is, there exists a family of functions \(\alpha_t\colon C \to [0, \infty)\) such that \(\|T_t(x) - T_t (y)\| \leq\alpha_t (x)\|x -y\|\) for \(x, y \in C\). The paper demonstrates how the weak compactness of \(C\) plays an essential role in proving the weak convergence of these processes to common fixed points.
Źródło:
Commentationes Mathematicae; 2012, 52, 2
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies