Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ślęzak, A." wg kryterium: Autor


Wyświetlanie 1-5 z 5
Tytuł:
Mathematical model of four-stroke combustion engine working process
Autorzy:
Ślęzak, M.
Jankowski, A.
Wojciechowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/246405.pdf
Data publikacji:
2007
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
combustion engine
combustion engine thermodynamics
working process
mathematical modelling
Opis:
By defining the fluid's thermodynamic properties, the cycle can be simplified using various assumptions. A lot of models of the combustion engine process were developed that including the thermodynamics, turbulence, and chemical kinetics to predict thermodynamic parameters of the engines. Mathematical model the working process occurring in the cylinder of the four-stroke piston-combustion engine is an object of the paper. The following assumptions consisting in that thermodynamics system is an open thermodynamical system, in accepted model were taken into account. Generalised mathematical model of the working process in the cylinder of the piston-four-stroke combustion engine was worked out. Dependences describing instantaneous volume of the working charge in the cylinder, equation of the balance of the of the working charge quantity in the cylinder and state equation of the working charge in the cylinder were considered at formulating of assumptions. Values of coefficients for each component processes of working cycle with taking into consideration of the dependence concerning the compression process , the combustion process, and expansion process after finishing of the combustion process were an object of worked out mathematical model. For nonstationary processes formulating working cycle of the engine realized during openings of valves (the open system), the quantity and composition of the working charge in the cylinder, its specific heat and temperature are variable. The temperature difference between the working charge and walls temperature of borderering the space of the cylinder was taken into account, too. Generalized mathematical model of the working process in the cylinder of the piston- four-stroke combustion engine applying for the theoretical analysis of the working process in the combustion engine, as well as for working out of experimental results was elaborated.
Źródło:
Journal of KONES; 2007, 14, 3; 587-595
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Theoretical and real working cycle of four stroke piston engine
Autorzy:
Ambrozik, A.
Jankowski, A.
Slezak, M.
Powiązania:
https://bibliotekanauki.pl/articles/243165.pdf
Data publikacji:
2007
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
combustion engine
thermodynamics
working cycle
cylinder pressure
Opis:
The most important problems concerning analyses of generalized computational thermodynamical working cycle of the four-stroke combustion engine are result of the identification of real indicating diagram. The analysis of working cycle of the four-stroke combustion engine is realized from point of view heat efficiency, the average theoretical cycle pressure, as well as of the influence of the organization working cycle on the value of the maximum pressure in the cylinder of a combustion engine. A novel mathematical model reflecting elementary processes occurring in the cylinder of a combustion engine and connected with it intake and exhaust systems of engine were proposed. Thermodynamical working cycles of four-stroke piston engines, theoretical working cycle of a four-stroke piston engine, thermal efficiency of the theoretical thermodynamic generalised engine work cycle, mean theoretical pressure of the generalised thermodynamic work cycle of a combustion engine, maximum pressure of the theoretical thermodynamic work cycle of a combustion engine, comparative working cycles of piston engines, real working cycle of four-stroke piston engines are presented In het paper. The methods of analyses and calculations referring these engines work cycles were presented. These method show advisability and needs of using them to theoretical calculations and analyses of real work cycles. Generalized engine work cycle was proposed.
Źródło:
Journal of KONES; 2007, 14, 2; 9-18
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis and research of piston working conditions of combustion engine in high thermal load conditions
Autorzy:
Jankowska-Sieminska, B.
Jankowski, A.
Slezak, M.
Powiązania:
https://bibliotekanauki.pl/articles/243400.pdf
Data publikacji:
2007
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
combustion engine
piston
thermal load
thermal expansion
thermal shock
Opis:
Explanation of phenomena occurring in pistons of combustion engines which appear during heating and cooling processes in reference to standard materials and composite materials of high material proprieties is aim of the paper. Bring over researches were mostly directed on measurements of difference dimensions which appear during the piston work in the combustion engine. The paper concentrates on phenomenon of different proprieties of materials. The thermal stresses and shocks differ. In the thermal shock, thermal stresses are caused by instantaneous temperature gradients which appear at high engine speed. These stresses are determined thro temperature distribution and they do not differ from stresses in steady-state conditions. Researches concerning thermal expansions were performed by means of sensitive dilatometer which can work in simple and differential system. Changes of dimensions versus temperature function were measured with inductive sensor and the sensitive Pt-ptrh thermocouple, and results were referred to reference material-Platinum. Research results are illustrated on diagrams of different courses of changes of the of thermal expansion coefficient during heating and cooling of standard and composite materials. Values of the thermal expansion coefficient a for the heating and cooling are smaller for composite alloys. The course of the coefficient â during cooling can be higher or lower from the coefficient a during heating. Similar values were also received. Maximum differences were of 10%. Smaller values of the coefficient a for composite alloys cause that for such the same thermal loads temperature gradients will be smaller for composite alloys. Courses of changes of the coefficient â have a different characteristics suited from chemical composition of alloy, granularity of the composite component and thermal treatment.
Źródło:
Journal of KONES; 2007, 14, 3; 233-243
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of thermodynamical parameters of combustion engine working cycle
Autorzy:
Siemińska - Jankowska, B.
Ambrozik, A.
Jankowski, A.
Ślęzak, M.
Powiązania:
https://bibliotekanauki.pl/articles/246372.pdf
Data publikacji:
2007
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
combustion engine
engine thermodynamics
engine working cycle
Opis:
Thermodynamics systems may be classified as isolated, closed, or open based on the possible transfer of mass and energy across the system boundaries. An isolated system is one that is not influenced in any way by the surroundings. This means that no energy in the form of heat or work may cross the boundary of the system. In addition, no mass may cross the boundary of the system. A thermodynamic system is defined as a quantity of matter of fixed mass and identity upon which attention is focused for study. A closed system has no transfer of mass with its surroundings, but may have a transfer of energy (either heat or work) with its surroundings. An open system is one that may have a transfer of both mass and energy with its surroundings. Described system being an object of the paper is an open system for some phenomena. An object the paper is the thermodynamical analysis of the filling process of the cylinder which occurs in calculated period from the percussion cap of the position the piston at TDC to it position at BDC, at constant average value of the pressure in the cylinder. During durations of the filling process of the cylinder, dirt of the working charge combustion products are not taken into account. One accepts that the quantity of the working charge in the established point placed on the compression line by piston BDC is equal quantity of the working charge in the end point of the filling process, answering to the start point of the real compression process. The state of the working charge in cylinder described is four parameters: a pressure, a temperature, quantity moles of the working charge and its volume. For appointment those parameters, earlier worked out dependences are put-upon.
Źródło:
Journal of KONES; 2007, 14, 3; 563-572
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Novel method appointing of the effective heat release coefficient during combustion process based on real indicator diagram
Autorzy:
Jankowski, A.
Ambrozik, A.
Jankowska-Sieminska, B.
Ślęzak, M.
Powiązania:
https://bibliotekanauki.pl/articles/244287.pdf
Data publikacji:
2007
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
combustion engine
working cycle
thermodynamics
indicator diagram
heat release
Opis:
An object of the paper is a novel method of effective heat release coefficient appointing during combustion process of the based on the real indicator diagram. The process quality of the heat release during process of combustion is evaluated by value of the effective heat release coefficient. Accepted assumptions at appointing effective coefficient of heat release refer to acceptable that thermodynamical parameters of the working charge according to points of the real indicator diagram and the computational diagram are such the same, the maximum pressure of real working cycle of the engine is equal to the pressure of the computational cycle, work of the working charge performed in period from point of closing of the inlet valve to point of the beginning of the exhaust process are for both considered working cycles equal, heat values of the carried to the real and computational cycle are such the same. The method of appointing of the self-ignition delay period is presented in the paper, using to this end intersection point of two graphs of temperature course of the working charge prepared for the first phase of combustion process. Other methods appointing characteristics is suggested in paper basing on the real indicator diagram. The graphic illustration of the preparing method of characteristics of the relative quantity of the heat release during combustion process is illustrated in paper.
Źródło:
Journal of KONES; 2007, 14, 4; 133-142
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies