Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "diesel combustion" wg kryterium: Temat


Tytuł:
Cmbustion of mixture of diesel fuel with gasoline in a compression ignition engine
Autorzy:
Tutak, W.
Jamrozik, A.
Powiązania:
https://bibliotekanauki.pl/articles/242181.pdf
Data publikacji:
2018
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
combustion
engine
diesel
gasoline
combustion phases
Opis:
Paper presents results of experimental investigation of combustion process of diesel-gasoline blend in compression ignition direct injection engine. The researches were conducted for constant load of engine at constant rotational speed. Operating parameters of engine powered with diesel-gasoline blend were at the same level as for engine powered by pure diesel fuel. The preliminary study was conducted using CFD modelling. Based on encouraging modelling results preliminary experimental research was carried out. It turned out that it is possible to co-burning diesel with the gasoline as a blend. A mixture of 20, 40 and 60% of gasoline with diesel was used. It was concluded that an increase in gasoline fraction in blend causes delay of start of the combustion process. The homogeneity of the fuel-air mixture was improved due to longer ignition delay, which is accompanied by higher values of pressure rise rate. With 20 and 40% of gasoline fraction causes higher peak pressure compared to reference fuel-burning ware obtained. Up to 40% of gasoline fraction, the BSFC was kept at the same level as for reference fuel. It was observed that with the increase in gasoline fraction up to 40% NOx emission increased as well. Based on the carried out tests it can be stated that it is possible to co-burn gasoline with diesel in a compression ignition engine while maintaining the invariable engine operating parameters and exhaust emissions.
Źródło:
Journal of KONES; 2018, 25, 2; 391-398
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
CFD modeling of thermal cycle of supercharged compression ignition engine
Autorzy:
Tutak, W.
Jamrozik, A.
Gruca, M.
Powiązania:
https://bibliotekanauki.pl/articles/247943.pdf
Data publikacji:
2012
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
combustion
modelling
CFD
diesel
injection
Opis:
Results of modelling of thermal cycle of turbocharged compression ignition IC engine are presented. The object of investigation was a 6CT107 turbocharged auto-ignition internal combustion engine powered by diesel oil, installed on an ANDORIA-MOT 100 kVA/ 80 kW power generating set in a portable version. The performed simulations of the combustion process have provided information on the spatial and time distributions of selected quantities within the combustion chamber of the test engine. The numerical analysis results have been juxtaposed with the results of indicating the engine on the test stand. Modelling of the thermal cycle of an auto-ignition piston engine in the AVL FIRE was carried out within the study. Advanced numerical submodels were used to analysis of combustion process, such as: Extended Coherent Flame Model (ECFM-3Z), turbulence model k-zeta-f, injection submodels with evaporation, collisions, coalescence and other. Intake and exhaust processes were included during modelling. This resulted in a lot of information about the intake, fuel mixing, ignition process and the exhaust process. Results of modelling were compared with results from real engine.
Źródło:
Journal of KONES; 2012, 19, 1; 465-472
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The effect of diesel fuel mixture and camelina oil ester on selected parameters of combustion process
Autorzy:
Orliński, P.
Powiązania:
https://bibliotekanauki.pl/articles/243639.pdf
Data publikacji:
2013
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
camelina oil ester
combustion
diesel engine
Opis:
This paper presents the results of comparative research into basic physical and chemical properties of pure diesel fuel and two types of mixtures: Camelina oil ester (Camelina oil ester content in the mixture was 10% and 15%) and diesel fuel. Camelina oil ester was used to show that it can also be used as an additive plant to diesel fuel (according to the plans of the European Union). Similarly to on a large scale used ester of rapeseed oil. The base fuel in the research was clean diesel fuel (without the addition of ester as in the case of diesel fuel available at petrol stations).The use of fuels with different physical and chemical properties to supply the diesel engine and the use of measuring equipment used for determining the parameters of fast-changing operation resulted in the determination of the operating medium average pressure during the combustion process. On the basis of the experimental pressure characteristics of heat release were identified. Analysis of these characteristics determined the proportion of total combustion phases of kinetics and diffusion, depending on the type of fuel and operating conditions. Finally, the paper shows that the fuel with different physicochemical properties has a significant effect on the combustion process. A comparative assessment of the suitability of tested mixtures for operational use was made.
Źródło:
Journal of KONES; 2013, 20, 3; 291-298
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Environmental Aspects of a Common Rail Diesel Engine Fuelled with Biodiesel/Diesel Blends
Autorzy:
Lotko, Wincenty
Smigins, Ruslans
Tziourtzioumis, Dimitrios
Górska, Milena
Powiązania:
https://bibliotekanauki.pl/articles/2204864.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
common rail
emissions
diesel
fuel injection
combustion
Opis:
The purpose of the study was the research concerning the emissions of limited exhaust gas components of the AVL research engine equipped with Common Rail injection system, fuelled with different biodiesel blends and diesel fuel as reference. In details, the engine was powered with mixtures of rapeseed methyl esters (RME) with DF in the volumetric ratios of 10:90, 20:80, 30:70, 40:60 and 50:50. The tests were performed at: 1200, 1700 and 2200 rpm and the torque T = 5…35 Nm (step 5 Nm). The analysis of the obtained results showed that the emissions of hydrocarbons (HC) from the tested engine fuelled with biodiesel are lower than that of diesel fuel. Carbon monoxide (CO) emissions are also lower, except for low rotational speeds and low engine load T = 5…20 Nm. As for nitrogen oxides (NOx) emissions, it is also lower than that for the diesel fuel, except for high engine loads, in the range above 25 Nm, for each rotation speed of the engine load characteristics. Moreover, in this research it was confirmed that emission of particulate matter (PM) is also slightly reduced for the engine fuelled with tested blends.
Źródło:
Advances in Science and Technology. Research Journal; 2022, 16, 5; 192--201
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The effect of aviation fuel JP-8 and diesel fuel blends on engine performance and exhaust emissions
Autorzy:
Labeckas, G.
Slavinskas, S.
Vilutienė, V.
Powiązania:
https://bibliotekanauki.pl/articles/949492.pdf
Data publikacji:
2015
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
diesel engine
jet fuel
diesel fuel
autoignition
combustion
performance
exhaust emissions
Opis:
The article presents bench test results of a four-stroke, four-cylinder, naturally aspirated, DI diesel engine operating with neat JP-8 fuel (J) and its blends with Diesel fuel (D) in following proportions by volume: 90/10 (J+10D), 70/30 (J+D30), 50/ 50 (J+D50), 30/70 (J+D70), and 100% diesel fuel (DF). The purpose of the research was to analyse and compare changes occurred in the autoignition delay, combustion events, engine performance efficiency, emissions, and smoke of the exhaust when running on JP-8 fuel, jet-diesel fuel blends, and diesel fuel at a full (100%) engine load and speed of 1400 min–1 at which maximum torque occurs and rated speed of 2200 min–1. It was found that the start of injection (SOI) and the start of combustion (SOC) occurred earlier in an engine cycle and the autoignition delay decreased by 9.0% and 12.7% due to replacement of aviation JP-8 fuel with diesel fuel at a full load and the latter speeds. Maximum in-cylinder pressure was 6.8% and 4.0% higher when operating with diesel fuel, whereas brake thermal efficiency was 3.3% and 7.7% higher, and brake specific fuel consumption 2.8% and 7.0% lower when using fuel blend J+D50 compared with the respective values measured with neat JP-8 fuel. Emissions of nitric oxide (NO) and nitrogen oxides (NOx) were 13.3% and 13.1% higher from a straight diesel running at speed of 1400 min–1, and 19.0% and 19.5% higher at a higher speed of 2200 min–1. The carbon monoxide (CO) emissions and total unburned hydrocarbons (HC) decreased 2.1 times and by 12.3% when running with fuel blend J+D70 at speed of 2200 min–1 compared with those values measured with jet fuel. Smoke of the exhaust was 53.1% and 1.9% higher when using fuel blend J+D10 than that of 46.9% and 70.0% measured with jet fuel at speeds of 1400 and 2200 min–1. The engine produced 34.5% more smoke from combustion of fuel blend J+D70 at the low speed of 1400 min–1, but smoke converted to be 11.3% lower when operating at a higher speed of 2200 min–1.
Źródło:
Journal of KONES; 2015, 22, 2; 129-138
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigation into particulate size distributions in the exhaust gas of diesel engines fuelled with biodiesel blends
Autorzy:
Chuepeng, S.
Theinnoi, K.
Xu, H. M.
Wyszynski, M. L.
York, A. P. E.
Hartland, J. C.
Qiao, J.
Powiązania:
https://bibliotekanauki.pl/articles/248072.pdf
Data publikacji:
2008
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
biodiesel
PM
combustion
diesel
PM size distribution
Opis:
Particulate matter (PM) size distributions in the exhaust gas of biodiesel blend fuelled diesel engines have been studied by experimenting firstly on a single cylinder equipped with a pump-line-injector injection system and secondly for comparison on a V6 DI engine equipped with a common rail fuel injection system. Both engines were operated with a biodiesel (RME) blend of B30 and ultra low sulphur diesel fuel (ULSD). Several engine load conditions with and without exhaust gas recirculation (EGR) were selected. Particulate number concentrations vs. the electrical mobility equivalent diameter were examined using a fast differential mobility spectrometer. The effect of engine operating conditions including EGR rates on particulate emissions has been investigated. It is found that PM sizes from combustion of B30 without EGR operation are generally smaller than those from ULSD while number concentrations are higher. This can result in lower PM mass estimates for the B30 case if due care is not taken. When EGR is applied to control nitrogen oxides emissions, both the total PM number and mass are increased and shifted toward the larger sizes for both fuels used in the test. The calculated total PM mass from B30 combustion is lower than in the ULSD case for all the tested engine operating conditions.
Źródło:
Journal of KONES; 2008, 15, 3; 75-82
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cycle-to-cycle variations of a diesel engine operating with palm biodiesel
Autorzy:
Yasin, M. H.
Mamat, R.
Abdullah, A. A.
Abdullah, N. R.
Wyszynski, M. L.
Powiązania:
https://bibliotekanauki.pl/articles/950092.pdf
Data publikacji:
2013
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
cycle-to-cycle variations
biodiesel
combustion
diesel engine
Opis:
Biodiesel is one of biodegradable and renewable fuel, which is originated from vegetable oil or animal fats. Different fuel properties of biodiesel produce different combustion characteristics which slightly differ to mineral diesel. Combustion studies on palm-biodiesel and mineral diesel were conducted using a multi-cylinder diesel engine operating at medium engine load at 2500 rpm. The engine was water cooled inline four cylinder diesel engines without exhaust gas recirculation system. Cycle-to-cycle variations of peak cylinder pressure and mean indicated pressure of the test fuels were determined for the combustion characteristics of diesel engine. In-cylinder pressure data for the 200 consecutive cycles were determined using a Kistler pressure transducer and recorded into a combustion analyser. Three different engine loads: 20%, 40% and 60% were selected in this study with a constant engine speed of 2500 rpm. The results show that at lower load, in-cylinder pressure variations for palm biodiesel were lower compared to mineral diesel. However, at medium and high loads, palm biodiesel has dominated the peak cylinder variations. Different combustion cyclic variations for mineral diesel and B100 are observed and generally influenced by psychochemical properties differences including viscosity and density of fuel.
Źródło:
Journal of KONES; 2013, 20, 3; 443-450
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Combustion of RME – diesel and NExBTL – diesel blends with hydrogen in the compression ignition engine
Autorzy:
Juknelevičius, R.
Szwaja, S.
Pyrc, M.
Gruca, M.
Pukalskas, S.
Powiązania:
https://bibliotekanauki.pl/articles/247823.pdf
Data publikacji:
2018
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
hydrogen
RME
HVO
NExBTL
PRO Diesel
diesel fuel
CI engine
combustion
emission
Opis:
The article presents the test results of the single cylinder compression ignition engine with common rail injection system operating on biofuels and conventional diesel blends with hydrogen. Two types of liquid fuels were tested: blend of the 7% Rapeseed Methyl Ester (RME) with conventional diesel fuel and Neste Pro Diesel – blend of the 15% Hydrotreated Vegetable Oil (HVO), produced by Neste Oil Corporation with conventional diesel fuel. The purpose of this investigation was to examine the influence of the hydrogen addition to biofuels and diesel blends on combustion phases, autoignition delay, engine performance efficiency and exhaust emissions. Hydrogen fraction was changed within the range from 0 to 43% by energy. Hydrogen was injected into the intake manifold, where it created homogeneous mixture with air. Tests were performed at both fixed and optimal injection timings at low, medium, and nominal engine load. After analysis of the engine bench tests and simulation with AVL BOOST software, it was observed that increasing hydrogen fraction shortened the fuel ignition delay phase and it affected the main combustion phase. Moreover, decrease of carbon monoxide (CO), carbon dioxide (CO2) and smoke opacity was observed with increase of hydrogen amounts to the engine. However, increase of the nitrogen oxide (NOx) concentration in the engine exhaust gases was observed.
Źródło:
Journal of KONES; 2018, 25, 3; 261-274
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The latest achievements in gasoline and diesel injection technology for the internal combustion engines
Autorzy:
Cwikowski, P.
Teodorczyk, A.
Powiązania:
https://bibliotekanauki.pl/articles/242329.pdf
Data publikacji:
2009
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
direct injection
combustion
diesel
gasoline
common rail
dimotronic
Opis:
The paper presents an overview of the latest achievements in gasoline and diesel injection technology. It is already clear that in 20 years' time the internal combustion engine will still be the drive of choicef or the car. Indeed, it still offers a great deal of development potential. Thanks to sophisticated solenoid and piezo-injectors, engineers can no w build smaller engines without sacrificing performance and torque. They refer to this as downsizing. Less engine displacement and fewer cylinders ensure reduced friction losses and therefore greater efficiency. With the same levels of torque, 25 percent less engine displacement cuts fuel consumption by around ten percent. And lower consumption means less CO2. Gasoline and diesel direct injection makes engines even more economical and eco-friendly. Gasoline direct injection, combustion strategies for stratifled-charge operation, GDI injectors, solenoid GDI injectors, piezo GDI injectors, Common Rail Injectors, Common-Rail injectors with piezo actuator, Common-Rail injectors for commercial vehicles, weaknesses of modern high pressure common-rail injectors, multiple injections, Hydrogen Supply Systems, technical requirements for H2 injectors, control range and duration of injection pulse are presented in the paper.
Źródło:
Journal of KONES; 2009, 16, 2; 79-90
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Combustion, performance and exhaust emissions of the diesel engine operating on jet fuel
Autorzy:
Labeckas, G.
Slavinskas, S.
Vilutiene, V.
Powiązania:
https://bibliotekanauki.pl/articles/248056.pdf
Data publikacji:
2012
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
diesel engine
jet fuel
autoignition
combustion
performance
emissions
smoke
Opis:
The article focuses on bench testing results of a four-stroke, four-cylinder, direct-injection, naturally aspirated diesel engine operating on the normal 95vol% (class C) diesel fuel + 5vol% RME (DF), F-34 jet fuel (JF) and jet fuel F-34 treated with the cetane improver (JF+0.12vol%). The purpose of the research is to investigate the availability to use of military F-34 jet fuel for land-based direct injection diesel engine powering and examine the effect of F-34 fuel and F-34 fuel treated with 0.12vol% 2-ethylhexyl nitrate on the autoignition delay, combustion, engine performance, emissions and smoke opacity of the exhausts. The peak in-cylinder gas pressure generated from JF and JF+0.12vol% is lower by 4.3% and 2.8% at 1400 min–1 speed, and 2.5% and 5.7% at 2200 min–1 speed compared to that 86.6 MPa and 82.5 MPa of the normal diesel. At rated 2200 min–1 speed, the use of treated jet fuel leads to smoother engine performance under all loads and the maximum cylinder pressure gradient lowers by 9.4% as against that 15.9 bar/deg of base diesel. The minimum brake specific fuel consumption (bsfc) for F-34 and treated F-34 fuels decreases by 4.8% and 3.5% at 1400 min–1 speed and increases by 2.7% and 3.7% at 2200 min–1 speed compared to 249.5 g/kWh and 251.8 g/kWh values of base diesel. Maximum NO emissions produced from fuels JF and JF+0.12vol% decrease by 11.5% and 7.0% at 1400 min–1, and 17.1% and 17.3% at 2200 min–1 speed compared to 1705 ppm and 1389 ppm emanating from the normal diesel. Maximum CO emissions produced from jet fuel JF and JF+0.12vol% decrease by 39.3% and 16.8% compared to that 4988 ppm produced from base diesel running at 1400 min–1 speed. At 2200 min-1 speed, the ecological effect of using fuel F-34 fuel decreases and the CO sustains over the whole load range at the same level and increases by 2.5% and 3.0% with regard to the normal diesel operating under high load. The HC emission also is lower by 78.3% and 58.8% for low and high loads compared to 230 ppm and 1820 ppm of the normal diesel running at 1400 min–1 speed. The smoke opacity ,generated from fuels JF and JF+0.12vol% sustains at lower levels over the all load range with the maximum values decreased by 14.6% and 8.1% with regard to 94.9% of the normal diesel operating at 1400 min–1 speed. The test results show that military F-34 fuel is a cleaner-burning replacement of diesel fuel and suggests fuel economy with reduced all harmful species, including NO, NO2, NOx, CO, HC, and smoke opacity of the exhausts.
Źródło:
Journal of KONES; 2012, 19, 1; 227-236
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Combustion and emissions investigation on low-speed two-stroke marine diesel engine with low sulfur diesel fuel
Autorzy:
Yang, Zhiyuan
Tan, Qinming
Geng, Peng
Powiązania:
https://bibliotekanauki.pl/articles/259117.pdf
Data publikacji:
2019
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
NOx emission
CO2 emission
marine diesel engine
combustion
marine low sulfur diesel fuel
Opis:
With the implementation and expansion of international sulfur emission control areas, effectively promoted the marine low sulfur diesel fuel (MLSDF) used in marine diesel engines. In this study, a large low-speed, two-stroke, cross-head, common rail, electronic fuel injection marine diesel engine (B&W 6S35ME-B9) was used for the study. According to diesel engine’s propulsion characteristics, experiments were launched respectively at 25%, 50%, 75%, 100% load working conditions with marine low sulfur diesel fuel to analyze the fuel consumption, combustion characteristics and emissions (NOx, CO2 , CO, HC) characteristics. The results showed that: Marine diesel engine usually took fuel injection after top dead center to ensure their safety control NOx emission. From 25% to 75% load working condition, engine’s combustion timing gradually moved forward and the inflection points of pressure curve after top dead center also followed forward. While it is necessary to control pressure and reduce NOx emission by delaying fuel injection timing at 100% load. Engine’s in-cylinder pressure, temperature, and cumulative heat release were increased with load increasing. Engine’s CO2 and HC emissions were significantly reduced from 25% to 75% load, while they were increased slightly at 100% load. Moreover, the fuel consumption rate had a similar variation and the lowest was only 178 g/kW·h at 75% load of the test engine with MLSDF. HC or CO emissions at four tests’ working conditions were below 1.23 g/kW·h and the maximum difference was 0.2 or 0.4 g/kW·h respectively, which meant that combustion efficiency of the test engine with MLSDF is good. Although the proportion of NOx in exhaust gas increased with engine’s load increasing, but NOx emissions were always between 12.5 and 13.0 g/kW·h, which was less than 14.4 g/kW·h. Thus, the test engine had good emissions performance with MLSDF, which could meet current emission requirements of the International Maritime Organization.
Źródło:
Polish Maritime Research; 2019, 1; 153-161
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The swirl ratio influence on combustion process and heat transfer in the opposed piston compression-ignition engine
Autorzy:
Tulwin, T.
Wendeker, M.
Czyż, Z.
Powiązania:
https://bibliotekanauki.pl/articles/973135.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Naukowe Silników Spalinowych
Tematy:
opposed
two-stroke
combustion
heat
diesel
silnik dwusuwowy
spalanie
ciepło
Opis:
In order to maximise engine heat efficiency an engines charge flow must be properly designed -especially its swirl and tumble ratio. A two-stroke compression-ignition opposed piston engine reacts to engine swirl differently compared to a standard automotive engine with axially symmetric combustion chamber. In order to facilitate direct fuel injection, high-pressure injectors must be positioned from the side of combustion chamber. Depending on the combustion chamber geometry the swirling gases impact greatly how the injection stream is formed. If the deformation is too high the high temperature combustion gases can hit the piston surface or get into gaps between the pistons. This greatly affects the heat lost to the pistons and raises their local temperature. More atomised injection stream is more prone to swirling gas flow due to its reduced droplet size and momentum. The paper presents simulation results and analyses for different intake process induced swirl ratios and different types of combustion chambers in an experimental aviation opposed piston engine.
Źródło:
Combustion Engines; 2017, 56, 3; 3-7
2300-9896
2658-1442
Pojawia się w:
Combustion Engines
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diesel combustion in high load situations: a visual analysis of mixture formation and air utilization
Autorzy:
Grüneberger, P.
Jocham, B.
Winklhofer, E.
Powiązania:
https://bibliotekanauki.pl/articles/133395.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Naukowe Silników Spalinowych
Tematy:
diesel engine
combustion
visual analysis
silnik spalinowy
spalanie
analiza wizualna
Opis:
As fuel injection pressures keep rising, questions focus on additional benefits to be gained from the considerable efforts to achieve and handle the fuel pressure increments. The aim of fuel injection processes is to support the mixing of fuel molecules with oxygen. The steps towards this goal include fuel atomization, evaporation, heat transfer from air into the liquid or vaporized fuel together with transport of fuel for best air utilization. Engineering degrees of freedom include the parameters of the fuel injection system and handling of in-cylinder gas conditions. The paper describes basic high pressure flow processes, spray propagation, evaporation and combustion and the mixing of flame clouds with in-cylinder air for oxidation of high temperature soot particles. Experimental evidence of such processes is derived from laboratory flow tests as well as from optically accessed engines operated under conditions relevant for todays passenger car and heavy duty engines.
Źródło:
Combustion Engines; 2017, 56, 2; 3-6
2300-9896
2658-1442
Pojawia się w:
Combustion Engines
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Combustion and performance parameters of a Diesel engine operating on ethanol-Diesel fuel blends
Autorzy:
Labeckas, G.
Slavinskas, S.
Lus, T.
Klyus, O.
Powiązania:
https://bibliotekanauki.pl/articles/906622.pdf
Data publikacji:
2013
Wydawca:
Akademia Morska w Szczecinie. Wydawnictwo AMSz
Tematy:
diesel engine
ethanol
diesel fuel
autoignition delay
combustion
NOx
CO
HC emissions
smoke opacity of the exhaust
Opis:
The article presents bench test results of a DI (60 kW) Diesel engine D-243 operating on class 2 Diesel fuel (DF) as baseline fuel and its 5vol%, 10vol% and 15vol% blends with anhydrous ethanol. The purpose of the research was to investigate the effect of the ethanol addition to Diesel fuel on the autoignition delay, combustion, engine performance efficiency and emissions of the exhaust. The results of engine operation on ethanol- Diesel blends are compared with baseline parameters of normal Diesel running at full (100%) load and rated 2200 rpm speed.
Źródło:
Zeszyty Naukowe Akademii Morskiej w Szczecinie; 2013, 36 (108) z. 2; 102-109
1733-8670
2392-0378
Pojawia się w:
Zeszyty Naukowe Akademii Morskiej w Szczecinie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diagnozowanie przebiegu ciśnienia w komorach spalania okrętowych silników spalinowych z wykorzystaniem sygnału drganiowego
Diagnosis of course of pressure in combustion chambers of marine diesel engines with utilize of vibration signals
Autorzy:
Monieta, J.
Waleriańczyk, P.
Powiązania:
https://bibliotekanauki.pl/articles/327570.pdf
Data publikacji:
2008
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
silnik okrętowy
ciśnienie
spalanie
diagnozowanie
marine diesel engine
combustion
pressure
diagnosis
Opis:
W artykule przedstawiono wyniki badań zastosowania sygnałów przyspieszeń drgań do diagnozowania przebiegu ciśnienia spalania w średnio-obrotowych silnikach wysokoprężnych. Badania wstępne przeprowadzono w warunkach laboratoryjnych na średnio-obrotowym okrętowym silniku wysokoprężnym z wykorzystaniem eksperymentu czynnego. Badano wpływ obciążenia względnego zespołu prądotwórczego na wartości wykorzystywanych parametrów diagnostycznych. Przetwarzane sygnały diagnostyczne przyspieszeń drgań za pomocą toru pomiarowego, analizowano z wykorzystaniem technik komputerowych w dziedzinie czasu, amplitudy i częstotliwości. Starano się wyselekcjonować symptomy diagnostyczne skorelowane z obciążeniem względnym silnika. Wybrano symptomy diagnostyczne ściśle skorelowane z obciążeniem względnym, które powinny być skorelowane również ze stanem technicznym.
In article have been presented of investigations values utilize of vibration acceleration for diagnosis of course of combustion pressure in medium-speed high-pressure engines. The researches has make in laboratory conditions on the medium speed marine diesel engines driven a generator, with utilization of effective experiment. There have been investigated influence of relative loads of generator set on the values of utilized diagnostic parameters. Processed of diagnostic signals of acceleration vibration oscillations behind assistance of measuring line, have been analyzed with utilization computer techniques in sphere of time, amplitudes and frequencies. It tries to select of diagnostic symptoms with relative load of engine correlated. Have been selected of diagnostic symptoms strictly correlated with relative load. These parameters should been correlated with technical state.
Źródło:
Diagnostyka; 2008, 2(46); 157-163
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies