Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Abelló, Alberto" wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Fusion of clinical data: A case study to predict the type of treatment of bone fractures
Autorzy:
Haq, Anam
Wilk, Szymon
Abelló, Alberto
Powiązania:
https://bibliotekanauki.pl/articles/330674.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
clinical data
data fusion
combination of data
combination of interpretation
prediction model
decision support
dane kliniczne
fuzja danych
łączenie danych
model predykcyjny
wspomaganie decyzji
Opis:
A prominent characteristic of clinical data is their heterogeneity—such data include structured examination records and laboratory results, unstructured clinical notes, raw and tagged images, and genomic data. This heterogeneity poses a formidable challenge while constructing diagnostic and therapeutic decision models that are currently based on single modalities and are not able to use data in different formats and structures. This limitation may be addressed using data fusion methods. In this paper, we describe a case study where we aimed at developing data fusion models that resulted in various therapeutic decision models for predicting the type of treatment (surgical vs. non-surgical) for patients with bone fractures. We considered six different approaches to integrate clinical data: one fusion model based on combination of data (COD) and five models based on combination of interpretation (COI). Experimental results showed that the decision model constructed following COI fusion models is more accurate than decision models employing COD. Moreover, statistical analysis using the one-way ANOVA test revealed that there were two groups of constructed decision models, each containing the set of three different models. The results highlighted that the behavior of models within a group can be similar, although it may vary between different groups.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2019, 29, 1; 51-67
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies