Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "podziemne zgazowanie węgla" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Możliwość zagospodarowania wybranych odpadów z procesów czystych technologii węglowych
Possibilities of management of selected wastes from the processes of clean coal technologies
Autorzy:
Olszewski, P.
Świnder, H.
Klupa, A.
Ciszek, K.
Powiązania:
https://bibliotekanauki.pl/articles/340981.pdf
Data publikacji:
2012
Wydawca:
Główny Instytut Górnictwa
Tematy:
gospodarka odpadami
odpady
czyste technologie węglowe
zgazowanie węgla
podziemne zgazowanie węgla
waste management
waste
clean coal technology
coal gasification
underground coal gasification
Opis:
Procesy czystych technologii węglowych w zdecydowanej większości wiążą się z produkcją odpadów, które należy zagospodarować lub zutylizować. Technologiczny postęp i rozwój procesów CTW sprawia, że przedmiotowe odpady zaczynają być traktowane jak produkty. Prezentowany artykuł ma charakter przeglądowy i dotyczy sposobów zagospodarowania wybranych i najczęściej powstających odpadów podczas procesów należących do tzw. czystych technologii węglowych. Scharakteryzowano najważniejsze produkty odpadowe w postaci stałej, ciekłej i gazowej, powstające w CTW. Sposoby i kierunki postępowania z nimi zostały przedstawione tabelarycznie. Zwrócono uwagę na perspektywiczne kierunki unieszkodliwiania, zwłaszcza ścieków powstających podczas podziemnego zgazowania węgla.
Processes of clean coal technologies are in most cases related to the production of waste to be disposed of or managed. Technological progress and the development of CCT processes make the waste begin to be treated as products. The present article has a review character and concerns the ways of managing selected and the most emerging wastes during the processes of the so-called clean coal technologies. The work characterizes the most important wastes and products in solid, liquid and gas states created by CCT. Ways and directions of managing the waste and products were presented in a tabular form. The prospective directions of neutralizing, the sewage waste arising during underground coal gasification in particular, have been emphasized.
Źródło:
Prace Naukowe GIG. Górnictwo i Środowisko / Główny Instytut Górnictwa; 2012, 4; 123-136
1643-7608
Pojawia się w:
Prace Naukowe GIG. Górnictwo i Środowisko / Główny Instytut Górnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ocena przydatności półautomatycznej metody oznaczania azotu Kjeldahla w ciekłych próbkach środowiskowych
Evaluation of semiautomatic method for the determination of kjeldahl nitrogen in liquid environmental samples
Autorzy:
Rodak, A
Bebek, M.
Strugała-Wilczek, A.
Powiązania:
https://bibliotekanauki.pl/articles/296972.pdf
Data publikacji:
2015
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
azot Kjeldahla
ścieki
podziemne zgazowanie węgla
wstrzykowa analiza przepływowa
Kjeldahl nitrogen
wastewater
coal gasification
flow injection analysis
Opis:
Ciągły rozwój metod analitycznych, zmierzający do uzyskania najbardziej miarodajnych wyników pomiarów, jest obowiązkiem każdego laboratorium badawczego, realizującego prace związane z ochroną i oceną stanu środowiska naturalnego. Celem przedstawionych badań jest praktyczna ocena przydatności specjalistycznego zestawu do oznaczania azotu metodą Kjeldahla w ciekłych próbkach środowiskowych o zróżnicowanym i nietypowym składzie fizykochemicznym. Proponowana wieloetapowa procedura oznaczania azotu metodą Kjeldahla obejmuje proces mineralizacji próbki, destylację otrzymanego mineralizatu oraz oznaczanie analitu w produkcie końcowym. W badaniach zastosowano zestaw szwajcarskiej firmy Büchi, składający się z pieca do mineralizacji Speed Digester K-436, destylarki Klej Flex K-360 oraz neutralizatora oparów (skrubera) B-414. Końcowe oznaczenie analitu prowadzono techniką wstrzykowej analizy przepływowej z dyfuzją gazową oraz detekcją spektrofotometryczną. Przeprowadzone dla roztworów wzorcowych oraz dla próbek środowiskowych pochodzących z różnych gałęzi przemysłu badania miały na celu optymalizację warunków pomiarowych i określenie wartości podstawowych cech jakościowych i ilościowych metody. Poprawność wyników otrzymanych za pomocą opracowanej procedury określono na podstawie badania odzysku azotu m.in. w ściekach socjalno-bytowych, komunalnych oraz w odciekach pochodzących z procesu podziemnego zgazowania węgla. Uzyskane wyniki badań potwierdziły przydatność zaproponowanej procedury pomiarowej do oznaczania azotu Kjeldahla zarówno w rutynowej praktyce laboratoryjnej, jak i w badaniach monitoringowych nietypowych procesów technologicznych. Automatyzacja procesu analitycznego zwiększa efektywność oznaczeń przy jednoczesnym zachowaniu dobrej powtarzalności, dokładności i wiarygodności wyników.
Continuous development of analytical methods, tend to obtain the most reliable measurement results, it is the responsibility of each laboratory performing research work related to the protection and assessment of the environment. The aim of this study is practical evaluation the usefulness of specialized set for determination of Kjeldahl nitrogen in liquid environmental samples of different and unusual physical and chemical composition. Kjeldahl nitrogen content in environmental waters is defined in legal acts in the field of water - waste disposal, which undertakes research laboratories involved in the assessment of the environment to obtain the most reliable measurement results in this scope. Determination of Kjeldahl nitrogen in water and wastewater is a specific method, assuming a multistep procedure for determining the indicator, used to monitoring and assess the state of the environment. The complexity of the research methodology is inseparably associated with an increased risk of load result to an error arising at the stage of the assay. In the study used a set for determination of Kjeldahl nitrogen, consisting of a mineralizer Speed Digester K-436, distiller Kjel Flex K-360 and vapor absorber Scrubber B-414 (Büchi, Switzerland). The concentration of the analyte in the obtained distillate was determined by using a flow injection analysis with spectrophotometric detection and gas diffusion. Object of the research consisted of standard solutions and environmental samples from different industries, including samples from the process of underground coal gasification, with highly variable matrix. The study aimed to optimize the measurement conditions and to determined the basic qualitative and quantitative characteristics of applied method, such as operating range, limit of quantification, precision under repeatability conditions and the correctness of the method. The correctness of the results obtained with the aid procedure determined based on nitrogen recovery test in domestic sewage, municipal wastes and wastewater from the process of underground coal gasification. Obtained results met requirements of the method and confirmed the usefulness of the proposed multistep measurement procedure for the determination of Kjeldahl nitrogen not only in routine laboratory practice, but also for monitoring processes. The proposed automation of the analytical process provides good repeatability, accuracy and reliability of results.
Źródło:
Inżynieria i Ochrona Środowiska; 2015, 18, 2; 179-187
1505-3695
2391-7253
Pojawia się w:
Inżynieria i Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza mechanizmu spalania gazu o składzie zbliżonym do składu gazu z procesu podziemnego zgazowania węgla - przegląd literatury
The analysis of combustion gas mechanism of a composition similar to the composition of gas from underground coal gasification process - literature review
Autorzy:
Gil, I.
Powiązania:
https://bibliotekanauki.pl/articles/340589.pdf
Data publikacji:
2011
Wydawca:
Główny Instytut Górnictwa
Tematy:
spalanie gazu
zgazowanie węgla
podziemne zgazowanie węgla
spalanie metanu
spalanie tlenku węgla
spalanie wodoru
combustion gas
coal gasification
underground coal gasification
combustion of methane
combustion of carbon monoxide
combustion of hydrogen
Opis:
W procesie podziemnego zgazowania węgla (PZW) powstaje gaz, którego skład zależy od technologii zgazowania i parametrów procesu. Przykładowy skład gazu z PZW podano w (Stańczyk i in. 2011; Białecka 2008; Stańczyk 2008). Składał się on głównie z: ditlenku węgla (1-64 procent), wodoru (2, 41,2 procent) i tlenku węgla (1,3-33,2 procent). Pozostałe gazy to: metan (0,1-5,4 procent, etan (0,0-0,13 procent), tlen (-5,7 procent) i azot (0,-78,2 procent) (Stańczyk i in. 2011; Białecka 2008). Z analizy (Stańczyk 2008) wynika, że najbardziej ekonomiczne jest przetwarzanie otrzymanego niskokalorycznego gazu na energię elektryczną przez spalenie go w turbinie gazowej. Mechanizm spalania paliwa o niskiej wartości opałowej nie jest dobrze poznany. W literaturze znajdują się wprawdzie opisy badań mechanizmu spalania gazu syntezowego, ale opierają się one na reakcjach zachodzących podczas spalania wodoru i tlenku węgla (Frassoldati, Fravelli, Ranzi 2007; Starik i in. 2010). Natomiast gaz wytwarzany podczas podziemnego zgazowania węgla zawiera również metan (Stańczyk i in. 2011; Stańczyk 2008). Dlatego należałoby w rozpatrywanym mechanizmie uwzględnić także reakcje utleniania CH4. Mechanizm spalania metanu jest dobrze poznany1 (Miller, Bowman 1989; Kozlov 1959; Konnov 2009; Skjoth-Rasmussen i in. 2004; Westbrook, Dryer 1984). Choć badania procesu spalania metanu z dodatkami, tj. CO2, CO czy H2 lub gazów inertnych (azot czy argon) podejmowano na przestrzeni ostatnich lat [najstarsze źródło pochodzi z 1988 r. (Zhu, Egolfo-poulos, Law 1988)], to mechanizm zachodzącego procesu spalania pozostaje nadal przedmiotem dyskusji (Konnov, Dyakov 2005; Coppens, Konnov 2008; Chernovsky, Atreya, Im 2007; Le Cong, Dagaut 2007; U Cong, Dagaut, Dayma 2008; Le Cong, Dagaut 2008a). Dlatego w celu efektywniejszego wykorzysta-a gazu niskokalorycznego do zasilania turbin gazowych, konieczna jest analiza istniejących mechanizmów spalania metanu, wodoru oraz tlenku węgla, celem której będzie określenie reakcji dominujących w zachodzącym procesie jednoczesnego spalania H2, CH4, i CO oraz ustalenie wpływu CO2 i H2O na zachodzący proces. Dotychczas nie podjęto próby modelowania procesów spalania układów zawierających CH4/H2/CO/CO2/O2/N2/H2O, dlatego ważne jest poznanie mechanizmu zachodzącego procesu jako drogi do bezproblemowego modelowania spalania gazu z PZW w turbinach gazowych. W niniejszym artykule przedstawiono analizę istniejących mechanizmów spalania w układach zawierających CH4/H2/CO/CO2/O2/N2/H2O, ze szczególnym uwzględnieniem wpływu dodatków (CO2, CO, H2 i H20) na zachodzący proces spalania metanu.
The composition of the gas produced in the process of Underground Coal Gasification (USG) depends on the technology and operating parameters applied. It mainly composes with: carbon dioxidc (12-64 per cent), hydrogen (2,5-41,2 per cent) and carbon monoxide (1,3-33,2 per cent). The others are: methane (0,17-5,4 per cent), ethane (0,01-0,13 per cent), oxygen (0-5,7 per cent) and nitrogen (0,1-78,2 per cent) (Stańczyk et al. 2011; Białecka 2008; Stańczyk 2008). The analysis (Stańczyk 2008) clearly indicates that the combustion in the gas turbinę combustor is the most economical method for the utilization of UCG gas. The combustion mechanism of that Iow calorific value fuel is not well understood. In the literaturę we can found the combustion mechanisms of the synthesis gas, but they are based upon the combustion hydrogen and carbon monoxide (Frassoldati, Fravelli, Ranzi 2007; Starik et al. 2010). While, the UCG gas also contains methane (Stańczyk et al. 2011; Stańczyk 2008). Therefore, the combustion mechanism should also take into account the methane oxidation reactions scheme. The mechanism of methane combustion is well known2 (Miller, Bowman 1989; Kozlov 1959; Konnov 2009; Skjoth-Rasmussen et al. 2004; Westbrook, Dryer 1984). However, the mechanism of methane combustion with additives such as: C02, CO and H2or j inert gas (nitrogen or argon) is a relatively new topic [the oldest source is 1988 (Zhu, Egolfopoulos, Law 1988)] and the combustion mechanism is still discussed (Konnov, Dyakov 2005; Coppens, Konnov 2008; Chernovsky, Atreya, Im 2007; Le Cong, Dagaut 2007; Le Cong, Dagaut, Dayma 2008; Le Cong, Dagaut 2008a). Therefore, to more efficient use of the UCG gas to the turbinę sets, it requires the analysis the existing combustion mechanisms of methane, hydrogen and carbon monoxide. This analysis will identify the dominant chemical reactions which affect the H2, CH4, CO system combustion and determination the role of C02 and H2O as the additives in the combustion process. Because the previously numerical tests did not yield satisfactory results, therefore it is important to know the mechanism of this process, as a way to remove the difficulties involved in the modeling of the UCG gas combustion in the gas turbines. In this paper the analysis of the existing combustion mechanisms in the systems consising of I CH4/H2/CO/CO2/O2/N2/H2O was made and the additives effect in detail were discussed.
Źródło:
Prace Naukowe GIG. Górnictwo i Środowisko / Główny Instytut Górnictwa; 2011, 3; 25-35
1643-7608
Pojawia się w:
Prace Naukowe GIG. Górnictwo i Środowisko / Główny Instytut Górnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Przegląd koncepcji podziemnego zgazowania węgla
Review of underground coal gasification conceptions
Autorzy:
Białecka, B.
Powiązania:
https://bibliotekanauki.pl/articles/340180.pdf
Data publikacji:
2006
Wydawca:
Główny Instytut Górnictwa
Tematy:
węgiel kamienny
wydobycie węgla
zgazowanie węgla
zgazowanie podziemne
hard coal
hard coal mining
coal gasification
underground gasification
Opis:
Jedną z perspektywicznych metod wykorzystania węgla, a głównie jego zasobów nie nadających się do eksploatacji metodami tradycyjnymi, jest podziemne zgazowanie. Pozwala ono na uzyskanie energii zawartej w węglu in situ, a tym samym uniknięcie ryzyka zagrożenia zdrowia i bezpieczeństwa człowieka - nieodłącznego podczas eksploatacji tradycyjnej. W Polsce, prawie we wszystkich obszarach górniczych, zalegają partie pokładów węgla, których eksploatacji zaniechano z przyczyn techniczno-ekonomicznych, czy też ze względów bezpieczeństwa; niektóre z tych zasobów mogą zostać efektywnie wykorzystane przez podziemne zgazowanie. W publikacji przedstawiono aktualny stan wiedzy w zakresie technologii podziemnego zgazowania węgla wraz z analizą koncepcji, opatentowanych sposobów i wdrożonych rozwiązań tego procesu. Zamieszczono także wielowymiarową analizę i ocenę takich aspektów, jak: rozeznanie geologiczne złoża, technika wierceń kierunkowych, technika zapalania węgla, technika pomiarowo-kontrolna, a także zagadnienia ekonomiczne oraz ochrony środowiska. Analiza taka jest niezbędna do oceny, czy prace nad podziemnym zgazowaniem węgla w polskich warunkach, są uzasadnione. Przeprowadzone rozeznanie stanu techniki wykazało, że znany proces podziemnego zgazowania węgla, realizowany także w skali przemysłowej, może być rozważany w Polsce jako przyszłościowe źródło gazu do zastosowań energetycznych i/lub chemicznych.
One of perspective methods of coal utilisation, and mainly its resources useless for mining with traditional methods, is an underground gasification. It enables to get energy contained in coal in situ and avoid in this way health and safety risk for a man, inseparable from traditional mining. In Poland, almost in every mining area, useless parties of coal seams lie, mining of which were given up for engineering-economic reasons or for safety reasons, also. Some of these resources may be effectively used through underground gasification. In the paper, the present state of art was presented in the scope of underground coal gasification technology along with analysis of conceptions, patented methods and implemented solutions of this process. It also contains multidimensional analysis and assessment of the following aspects: recognition of geological deposits, technology of directional drilling, technology of coal ignition, measuring-supervisory techniques, and also economic as well as environmental protection questions. Such an analysis is necessary for assessment whether works on underground coal gasification are well founded in Polish conditions. Recognition of the state of art conducted showed that the well-known process of underground coal gasification, realised also in industrial scale, can be considered as a future source of gas to be used in Poland for energetic and/or chemical needs.
Źródło:
Prace Naukowe GIG. Górnictwo i Środowisko / Główny Instytut Górnictwa; 2006, 4; 5-15
1643-7608
Pojawia się w:
Prace Naukowe GIG. Górnictwo i Środowisko / Główny Instytut Górnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mapa rozwiązań technologicznych procesów zgazowania węgla
Chart of technology solutions for coal gasification processes
Autorzy:
Bigda, J.
Burchart-Korol, D.
Porada, S.
Powiązania:
https://bibliotekanauki.pl/articles/166983.pdf
Data publikacji:
2014
Wydawca:
Stowarzyszenie Inżynierów i Techników Górnictwa
Tematy:
zgazowanie węgla
podziemne zgazowanie
gaz syntezowy
oczyszczanie gazu
coal gasification
underground gasification
synthesis gas
gas cleaning
Opis:
W artykule przedstawiono porównanie najbardziej dojrzałych i perspektywicznych reaktorów, które mogą być wykorzystane do zgazowania węgla w polskich warunkach. Wybrano reaktory dyspersyjne: Shell, GE/Texaco, Prenflo, Siemens i E-Gas, reaktor fluidalny U-Gas oraz reaktor transportujący KBR Transport. Reaktory te reprezentują różne rozwiązania technologiczne. Technologie wykorzystujące te reaktory są szeroko stosowane na całym świecie i mogą być wykorzystane zarówno dla potrzeb sektora energetycznego, jak i chemii czy produkcji paliw. Dokonano również analizy różnych rozwiązań technologicznych procesów podziemnego zgazowania węgla oraz najważniejszych konfiguracji technologicznych oczyszczania gazu ze zgazowania, w zależności od jego zastosowania.
This paper presents a comparison of the most advanced and prospective reactors which can be used for coal gasification in Poland. Entrained bed reactors Shell, GE / Texaco, Prenflo, Siemens and E-Gas fluidized bed reactor U-Gas and the transporting reactor KBR were taken into consideration. These reactors represent different technological solutions. Technologies using these reactors are widely used throughout the world and can be used both for energy, chemicals and fuels production. Various technological processes of underground coal gasification and the most important technological configuration of the gasification gas purification, depending on its application, were also examined.
Źródło:
Przegląd Górniczy; 2014, 70, 11; 86-96
0033-216X
Pojawia się w:
Przegląd Górniczy
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies