Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "pattern identification" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Multi-parameter data visualization by means of principal component analysis (PCA) in qualitative evaluation of various coal types
Autorzy:
Niedoba, T.
Powiązania:
https://bibliotekanauki.pl/articles/109595.pdf
Data publikacji:
2014
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
principal component analysis
PCA
multi-parameter data visualization
coal
identification of data
covariance matrix
pattern recognition
Opis:
Multi-parameter data visualization methods are a modern tool allowing to classify some analyzed objects. When it comes to grained materials, e.g. coal, many characteristics have an influence on the material quality. Besides the most obvious features like particle size, particle density or ash contents, coal has many other qualities which show significant differences between the studied types of material. The paper presents the possibility of applying visualization techniques for coal type identification and determination of significant differences between various types of coal. The Principal Component Analysis was applied to achieve this purpose. Three types of coal 31, 34.2 and 35 (according to Polish classification of coal types) were investigated, which were initially screened on sieves and subsequently divided into density fractions. Next, each size-density fraction was analyzed chemically to obtain other characteristics. It was pointed out that the applied methodology allowed to identify certain coal types efficiently, which makes it useful as a qualitative criterion for grained materials. However, it was impossible to provide such identification based on contrastive comparisons of all three types of coal. The presented methodology is a new way of analyzing data concerning widely understood mineral processing.
Źródło:
Physicochemical Problems of Mineral Processing; 2014, 50, 2; 575-589
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of relevance maps in multidimensional classification of coal types
Zastosowanie map odniesienia w wielowymiarowej klasyfikacji typów węgla
Autorzy:
Niedoba, T.
Powiązania:
https://bibliotekanauki.pl/articles/220101.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
relevance maps
multidimensional data visualization
coal
identification of data
pattern recognition
mapy odniesienia
wizualizacja wielowymiarowych danych
identyfikacja danych
rozpoznawanie kształtów
Opis:
Multidimensional data visualization methods are a modern tool allowing to classify some analyzed objects. In the case of grained materials e.g. coal, many characteristics have an influence on the material quality. In case of coal, apart from most obvious features like particle size, particle density or ash contents there are many others which cause significant differences between considered types of material. The paper presents the possibility of applying visualization techniques for coal type identification and determination of significant differences between various types of coal. Author decided to apply relevance maps to achieve this purpose. Three types of coal – 31, 34.2 and 35 (according to Polish classification of coal types) were investigated, which were initially screened on sieves and then divided into density fractions. Then, each size-density fraction was chemically analyzed to obtain other characteristics. It was stated that the applied methodology allows to identify certain coal types efficiently and can be used as a qualitative criterion for grained materials. However, it was impossible to achieve such identification comparing all three types of coal together. The presented methodology is new way of analyzing data concerning Widery understood mineral processing.
Surowce mineralne, które podlegają wzbogacaniu w celu ich lepszego wykorzystania mogą być (charakteryzują się) charakteryzowane wieloma wskaźnikami opisującymi ich, interesujące przeróbkarza, cechy. Podstawowymi cechami są wielkość ziaren oraz ich gęstość, które decydują o przebiegu rozdziału zbiorów ziaren (nadaw) i efektach takiego rozdziału. Rozdział prowadzi się z reguły, w celu uzyskania produktów o zróżnicowanych wartościach średnich wybranej cechy, która zwykle charakteryzowana jest zawartością określonego składnika surowca wyznaczoną na drodze analiz chemicznych. Takie podejście do surowca mineralnego prowadzi do potraktowania go jako wielowymiarowego wektora X = [X1,..., Xn]. Zasadniczym problemem jest także wybór jednostki populacji generalnej (ziarno, jednostka objętości lub masy), co może decydować o kierunkach charakteryzowania wielowymiarowych powiązań cech wektora X. Takimi kierunkami charakteryzowania mogą być: – wielowymiarowe rozkłady wektora losowego X wraz ze wszystkimi konsekwencjami metody (Lyman, 1993; Niedoba, 2009; 2011; Olejnik et al., 2010; Niedoba i Surowiak, 2012); – wielowymiarowe równania regresji wraz z analizą macierzy współczynników korelacji liniowej oraz korelacji cząstkowej (Niedoba, 2013b); – analiza czynnikowa (Tumidajski, 1997; Tumidajski and Saramak, 2009); – metody wielowymiarowej wizualizacji danych. W artykule zastosowano nowoczesną metodę wizualizacji wielowymiarowych danych – metodę tzw. map odniesienia (z ang. relevance maps). Aby zastosować ww. metodę przeprowadzono doświadczenia na trzech typach węgla, pobranych z trzech kopalni węgla kamiennego, zlokalizowanych w Górnośląskim Okręgu Przemysłowym. Były to węgle typu 31, 34.2 i 35, według polskiej klasyfikacji węgli. Każdą z pobranych prób poddano rozdziałowi na klasy ziarnowe a następnie każdą z klas ziarnowych rozdzielono na frakcje densymetryczne za pomocą rozdziału w roztworze chlorku cynku. Tak otrzymane klaso-frakcje przebadano chemiczne ze względu na wybrane parametry jakościowe węgla. Były to takie cechy jak: ciepło spalania, zawartość popiołu, zawartość siarki, zawartość substancji lotnych oraz miąższość materiału. Otrzymano w ten sposób zestaw siedmiu danych dla każdej klasy ziarnowej i każdego typu węgla. Stanowił on swoisty siedmiowymiarowy zbiór, który postanowiono zobrazować za pomocą techniki wizualizacji bazującej na tzw. mapach odniesienia. W metodzie map odniesienia na płaszczyźnie służącej do wizualizacji danych zostają rozmieszczone specjalne punkty zwane punktami odniesienia, reprezentujące poszczególne cechy. Do każdej cechy (współrzędnej) zostaje przyporządkowany punkt odniesienia reprezentujący tą cechę. Czyli przy danych 7-wymiarowych umieszczamy na płaszczyźnie 7 takich punktów odniesienia reprezentujących poszczególne współrzędne. Rozkład punktów reprezentujących przedstawiane wielowymiarowe dane odzwierciedla relacje pomiędzy tymi danymi a cechami. Im bardziej i-ta cecha występuje w danym obiekcie (czyli i-ta współrzędna ma większą wartość), tym bliżej powinien leżeć punkt reprezentujący dany obiekt względem punktu odniesienia reprezentującego i-tą cechę (współrzędną). W ten sposób każdy punkt odniesienia reprezentujący daną cechę, dzieli płaszczyznę na obszary bardziej oraz mniej zależne od cechy nr i (mniej oraz bardziej odległe od punktu odniesienia reprezentującego i-tą cechę). Dokładny opis algorytmu przedstawiono w podrozdziale 3 artykułu. Za pomocą omawianej metody dokonano wizualizacji danych dotyczących przedstawionych typów węgla. Uzyskane rezultaty przedstawiono na rysunkach 1-9. Widoki te pokazują sposób, w jaki 7-wymiarowe dane zostają przekształcone przy pomocy mapy odniesienia do dwóch wymiarów. Algorytm wizualizacji przy użyciu mapy odniesienia działa tak by pomimo znacznej redukcji liczby wymiarów, w jak największym stopniu odległości pomiędzy punktem reprezentującym konkretny wektor danych a punktami odniesienia zależały od współrzędnych tego wektora danych. W ten sposób na ekranie 2-wymiarowym, możemy zobaczyć istotne cechy danych 7-wymiarowych. Na rysunkach 1-4 widać, w jaki sposób wzrasta grupowanie punktów reprezentujących trzy różne klasy węgla (31, 34.2 oraz 35) wraz ze wzrostem parametru ITER. Widać, że punkty będące obrazami danych reprezentujących te same klasy węgla zaczynają zajmować osobne podobszary oraz zaczynają się grupować. Jednak w niektórych częściach przestrzeni obrazy punktów reprezentujących różne klasy węgla zachodzą na siebie. Przez to nie możemy na podstawie tych rysunków stwierdzić, że analizowane dane pozwalają na prawidłową klasyfikację typów węgla. W celu uzyskania bardziej czytelnych wyników postanowiono przedstawić przy pomocy mapy odniesienia, te same dane w nieco inny sposób. Postanowiono przeanalizować dane reprezentujące różne typy węgla parami. Rysunek 5 przedstawia widok uzyskany dla danych reprezentujących typy węgla 34.2 oraz 35. Widać na nim czytelnie, że obrazy punktów reprezentujących próbki węgla typu 34.2 gromadzą się w skupiskach, które łatwo można odseparować od skupisk obrazów punktów reprezentujących próbki węgla 35. Podobne obserwacje dokonano na podstawie rysunków 6 i 7, gdzie przedstawiono parami, odpowiednio, węgle typu 31 i 34.2 oraz 31 i 35. Przeprowadzona wizualizacja wielowymiarowa przy użyciu map odniesienia pozwala więc stwierdzić, że informacje zawarte w analizowanych siedmiowymiarowych danych są wystarczające do prawidłowej klasyfikacji typów węgla 31, 34.2 oraz 35.
Źródło:
Archives of Mining Sciences; 2015, 60, 1; 93-106
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of multidimensional scaling to classification of various types of coal
Zastosowanie skalowania wielowymiarowego do klasyfikacji różnych typów węgli
Autorzy:
Jamróz, D.
Powiązania:
https://bibliotekanauki.pl/articles/219176.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
skalowanie wielowymiarowe
MDS
wizualizacja danych wielowymiarowych
węgiel
identyfikacja danych
statystyczne metody graficzne
rozpoznawanie obrazów
multidimensional scaling
multidimensional data visualization
coal
identification of data
statistical graphics methods
pattern recognition
Opis:
Visualization of multidimensional data is a new way of statistical analysis of so-called statistical graphical methods. These methods allow to classify some analyzed objects, including their various features. Facing grained materials problems, like coal or ores many characteristics have an influence on the quality of product. In case of coal, many features must be taken into consideration to determine quality of the material. Apart from most obvious characteristics like particle size, particle density or ash contents there are many others which cause significant differences between considered types of material. In the paper the application of Multidimensional Scaling Method is presented which is one of the multidimensional data visualization techniques. To this purpose, sampling of three types of coal was performed, which were 31, 34.2 and 35 (according to Polish classification of coal types). First, the material was screened on sieves and then divided into density fractions. Next step was to analyze chemically the obtained particle and size fractions of researched coal. Then, the Multidimensional Scaling Method was applied to visualize the investigated set of data. It was proved that the applied methodology allows to identify certain coal types efficiently and can be used as a qualitative criterion for grained materials. However, it was impossible to achieve such identification comparing all three types of coal together. The Multidimensional Scaling Method is new technique of data analysis concerning widely understood mineral processing.
Surowce mineralne, które podlegają wzbogacaniu w celu ich lepszego wykorzystania mogą być charakteryzowane wieloma wskaźnikami opisującymi ich, interesujące przeróbkarza, cechy. Podstawowymi cechami są wielkość ziaren oraz ich gęstość, które decydują o przebiegu rozdziału zbiorów ziaren (nadaw) i efektach takiego rozdziału. Rozdział prowadzi się z reguły, w celu uzyskania produktów o zróżnicowanych wartościach średnich wybranej cechy, która zwykle charakteryzowana jest zawartością określonego składnika surowca wyznaczoną na drodze analiz chemicznych. Takie podejście do surowca mineralnego prowadzi do potraktowania go jako wielowymiarowego wektora X = [X1, …, Xn]. Zasadniczym problemem jest także wybór jednostki populacji generalnej (ziarno, jednostka objętości lub masy), co może decydować o określeniu charakteru wielowymiarowych powiązań cech wektora X. Takimi kierunkami charakteryzowania mogą być wielowymiarowe rozkłady wektora losowego X wraz ze wszystkimi konsekwencjami metody (Lyman, 1993; Niedoba, 2009; 2011; Olejnik et al., 2010; Niedoba i Surowiak, 2012), wielowymiarowe równania regresji wraz z analizą macierzy współczynników korelacji liniowej oraz korelacji cząstkowej (Niedoba, 2013c), analiza czynnikowa (Tumidajski i Saramak, 2009), czy metody wielowymiarowej wizualizacji danych, będące tematem niniejszego artykułu. Biorąc pod uwagę analizę korelacji pomiędzy badanymi cechami materiałów uziarnionych (węgli) można zidentyfikować jakie jego cechy są ze sobą istotnie powiązane. Jest to swoiste preludium do wytypowania, które cechy węgla powodują istotne różnice pomiędzy jego typami. W artykule poddano badaniu trzy typy węgla, według polskiej klasyfikacji - węgle 31, 34.2 oraz 35, pochodzące z trzech różnych kopalni Górnośląskiego Okręgu Przemysłowego. Można powiedzieć, że z punktu widzenia ich jakości były to węgle energetyczne, semi-koksujące oraz koksujące. Każdy z tych węgli został poddany podziałowi na klasy ziarnowe, przy zastosowaniu odpowiedniego zestawu sit. Następnie każdą z otrzymanych klas ziarnowych rozdzielono w cieczach ciężkich na frakcje densymetryczne. Tak otrzymane klaso-frakcje zostały dodatkowo poddane analizie chemicznej ze względu na szereg cech, tj. ciepło spalania, zawartość siarki, zawartość substancji lotnych, zawartość popiołu, miąższość. Wyniki analiz dla wybranej klasy ziarnowej przedstawiono w tabeli 1. Tym samym otrzymano siedmiowymiarowy zestaw danych, który postanowiono poddać wielowymiarowej wizualizacji za pomocą metody skalowania wielowymiarowego. Metoda skalowania wielowymiarowego (multidimensional scaling, MDS) jest jedną z nowoczesnych metod wizualizacji danych. Tego typu metody są wskazane zwłaszcza w sytuacji gdy ma się do czynienia z zestawem skomplikowanych i złożonych danych. Skalowanie wielowymiarowe jest odwzorowaniem przestrzeni n-wymiarowej w przestrzeń m-wymiarową. Oparte jest na obliczaniu odległości pomiędzy każdą parą n-wymiarowych punktów. Na podstawie tych odległości rozważana metoda ustala wzajemne położenie obrazów tych punktów w docelowej przestrzeni m-wymiarowej. Niech dij oznacza odległość pomiędzy n-wymiarowymi punktami nr i oraz j. Skalowanie wielowymiarowe polega na takim rozmieszczeniu punktów w przestrzeni m-wymiarowej, by odległość Dij liczona w tej przestrzeni pomiędzy odwzorowanymi punktami nr i oraz j była jak najbardziej zbliżona do dij. Rozdział 4 zawiera wyniki eksperymentów. Na rysunkach 1-4 widać, w jaki sposób wzrasta grupowanie punktów reprezentujących trzy różne klasy węgla (31, 34.2 oraz 35) wraz ze wzrostem parametru ITER. Widać, że punkty będące obrazami danych reprezentujących te same klasy węgla zaczynają zajmować osobne podobszary oraz zaczynają się grupować. Czytelność podziału przestrzeni rośnie wraz ze zwiększeniem parametru ITER, więc wraz z dokładniejszym dopasowaniem odległości obrazów punktów Dij w przestrzeni 2-wymiarowej do oryginalnych odległości dij pomiędzy punktami w przestrzeni n-wymiarowej. Na rysunku 4 pokazano najbardziej czytelny wynik, jaki udało się uzyskać dla danych zawierających trzy typy węgla 31, 34.2 oraz 35. Nastąpiło to przy parametrze ITER = 793. Widać wyraźnie, że obrazy punktów danych reprezentujących próbki węgla danego typu gromadzą się w skupiskach. Można zaobserwować, że na prawie całym obszarze rysunku, skupiska te można od siebie odseparować. Jednak w niektórych częściach przestrzeni obrazy punktów reprezentujących różne klasy węgla zachodzą na siebie. Przez to nie możemy na podstawie tego rysunku stwierdzić, że analizowane dane pozwalają na prawidłową klasyfikację typów węgla. Postanowiono więc przeanalizować dane reprezentujące różne typy węgla parami. Na rysunkach 5-7 przedstawiono parami węgle typu, odpowiednio, 34.2 i 35 (Rys. 5), 31 i 34.2 (Rys. 6) oraz 31 i 35 (Rys. 7). Na każdym z tych rysunków widać czytelnie, że obrazy punktów reprezentujących próbki różnych typów węgla gromadzą się w skupiskach, które łatwo można od siebie odseparować. Przeprowadzona wizualizacja wielowymiarowa przy użyciu skalowania wielowymiarowego pozwala więc stwierdzić, że informacje zawarte w analizowanych siedmiowymiarowych danych są wystarczające do prawidłowej klasyfikacji typów węgla 31, 34.2 oraz 35.
Źródło:
Archives of Mining Sciences; 2014, 59, 2; 413-425
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies