Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Apache Spark" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Detection of DDoS Attacks in OpenStack-based Private Cloud Using Apache Spark
Autorzy:
Gumaste, Shweta
G., Narayan D.
Shinde, Sumedha
K., Amit
Powiązania:
https://bibliotekanauki.pl/articles/1839316.pdf
Data publikacji:
2020
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
cloud
DDoS
distributed processing
OpenStack
Apache Spark
random forest
Opis:
Security is a critical concern for cloud service providers. Distributed denial of service (DDoS) attacks are the most frequent of all cloud security threats, and the consequences of damage caused by DDoS are very serious. Thus, the design of an efficient DDoS detection system plays an important role in monitoring suspicious activity in the cloud. Real-time detection mechanisms operating in cloud environments and relying on machine learning algorithms and distributed processing are an important research issue. In this work, we propose a real-time detection of DDoS attacks using machine learning classifiers on a distributed processing platform. We evaluate the DDoS detection mechanism in an OpenStack-based cloud testbed using the Apache Spark framework. We compare the classification performance using benchmark and real-time cloud datasets. Results of the experiments reveal that the random forest method offers better classifier accuracy. Furthermore, we demonstrate the effectiveness of the proposed distributed approach in terms of training and detection time.
Źródło:
Journal of Telecommunications and Information Technology; 2020, 4; 62-71
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Processing of satellite data in the cloud
Autorzy:
Proficz, J.
Drypczewski, K.
Powiązania:
https://bibliotekanauki.pl/articles/1940555.pdf
Data publikacji:
2017
Wydawca:
Politechnika Gdańska
Tematy:
Apache Spark
satellite data
Sentinel-2
ESA
big data
cloud
OpenStack
dane satelitarne
duże zbiory danych
chmura
Opis:
The dynamic development of digital technologies, especially those dedicated to devices generating large data streams, such as all kinds of measurement equipment (temperature and humidity sensors, cameras, radio-telescopes and satellites – Internet of Things) enables more in-depth analysis of the surrounding reality, including better understanding of various natural phenomenon, starting from atomic level reactions, through macroscopic processes (e.g. meteorology) to observation of the Earth and the outer space. On the other hand such a large quantitative improvement requires a great number of processing and storage resources, resulting in the recent rapid development of Big Data technologies. Since 2015, the European Space Agency (ESA) has been providing a great amount of data gathered by exploratory equipment: a collection of Sentinel satellites – which perform Earth observation using various measurement techniques. For example Sentinel-2 provides a stream of digital photos, including images of the Baltic Sea and the whole territory of Poland. This data is used in an experimental installation of a Big Data processing system based on the open source software at the Academic Computer Center in Gdansk. The center has one of the most powerful supercomputers in Poland – the Tryton computing cluster, consisting of 1600 nodes interconnected by a fast Infiniband network (56 Gbps) and over 6 PB of storage. Some of these nodes are used as a computational cloud supervised by an OpenStack platform, where the Sentinel-2 data is processed. A subsystem of the automatic, perpetual data download to object storage (based on Swift) is deployed, the required software libraries for the image processing are configured and the Apache Spark cluster has been set up. The above system enables gathering and analysis of the recorded satellite images and the associated metadata, benefiting from the parallel computation mechanisms. This paper describes the above solution including its technical aspects.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2017, 21, 4; 365-377
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies