Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "landsat" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Semiautomatic land cover mapping according to the 2nd level of the CORINE Land Cover legend
Autorzy:
Golenia, M.
Zagajewski, B.
Ochtyra, A.
Hościło, A.
Powiązania:
https://bibliotekanauki.pl/articles/92466.pdf
Data publikacji:
2015
Wydawca:
Oddział Kartograficzny Polskiego Towarzystwa Geograficznego
Tematy:
classification
Corine Land Cover
Landsat
artificial neural networks
Warsaw
Opis:
Actual land cover maps are a very good source of information on present human activities. It increases value of actual spatial databases and it is a key element for decision makers. Therefore, it is important to develop fast and cheap algorithms and procedures of spatial data updating. Every day, satellite remote sensing deliver vast amount of new data, which can be semi-automatically classified. The paper presents a method of land cover classification based on a fuzzy artificial neural network simulator and Landsat TM satellite images. The latest CORINE Land Cover 2012 polygons were used as reference data. Three satellite images acquired 21 April 2011, 5 June 2010, 27 August 2011 over Warsaw and surrounding areas were processed. As an outcome of classification procedure, the maps, error matrices and a set of overall, producer and user accuracies and a kappa coefficient were achieved. The classification accuracy oscillates around 76% and confirms that artificial neural networks can be successfully used for forest, urban fabric, arable land, pastures, inland waters and permanent crops mapping. Low accuracies were obtained in case of heterogenic land cover units.
Źródło:
Polish Cartographical Review; 2015, 47, 4; 203-212
2450-6974
Pojawia się w:
Polish Cartographical Review
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja gleb słonych doliny Czuj w Kirgistanie na podstawie wielospektralnych obrazów satelitarnych Landsat TM, Landsat ETM+, TERRA ASTER oraz danych naziemnych
Classification of salt-affected soils of the Chuy Valley in Kyrgyzstan using multispectral satellite Landsat TM, Landsat ETM+, TERRA ASTER images and ground-collected data
Autorzy:
Kokoeva, G.
Powiązania:
https://bibliotekanauki.pl/articles/132209.pdf
Data publikacji:
2007
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
gleby słone
klasyfikacja
obraz satelitarny
satelita Landsat
satelita TERRA ASTER
dane naziemne
Kirgistan
salt-affected soils
classification
satellite Landsat
satellite TERRA ASTER
satellite image
ground-collected data
Kyrgyzstan
Opis:
The natural conditions of Kyrgyzstan and consequences of human-induced processes, such as inappropriate methods of irrigation, have led to the extension of salt-affected soils. Extensive areas of irrigated land have been increasingly degraded by salinization from over-irrigation and other forms of inadequate agricultural practices. Between 1985 and 1990, the area of salt-affected soils increased from 666 300 ha to 1170 300 ha (Mamytov, 1995). In recent years salinity processes have been described as one of the problems of agriculture in that area. For the last ten years many none-affected soils of the Chuy Valley have become salinized. According to Mamytov et al. (1991) the total area of salt-affected soils in the Chuy Valley exceeds 259.5 thousands ha, which is more than 42% of the research area. In this research, an attempt has been made to estimate soil salinity quantitatively and also spatially by applying remote sensing techniques. Conventional methods of mapping salt-affected soils consume a lot of energy, time and money. Remote sensing enables us to detect and to map salt-affected soils by using relatively cheap multispectral satellite data such as Landsat TM, Landsat ETM+ and TERRA ASTER. The objective of this study is to identify salt-affected soils by integrating satellite images with ground-collected data. In order to achieve this goal the best algorithms of an unsupervised and a supervised classifi cation have been chosen using TNTmips software. The Normalized Difference Vegetation Index (NDVI) and the Transformed Vegetation Index (TVI) have been applied to distinguish densely and partly vegetation- covered soils, which are not salt-affected. To distinguish areas covered with stone and sands from saline soils the Salinity Index (SI) has been applied. For the differentiation of arable land which is not covered with vegetation the brightness parameter of Tasseled Cap transformation has been used. All these indices were calculated from satellite images. Finding an appropriate interpretation scheme for identifying the saltaffected soils of the Chuy Valley becomes a very important factor infl uencing the accuracy of the supervised classifi cation. The temporal change of salinity accumulation is demonstrated by comparing the classifi cation’s results of the multispectral satellite images from 1994 to those of 2001. This study also includes measurements of spectral properties of collected soil samples for better understanding the difference in classifi cation accuracy of various types of salt-affected soils. Spectral refl ectance was registered from the surfaces of saline and saline-sodic soils using fi eld luminancemeter CIMEL CE 313-21 in the following wavelength bands: 450 nm, 550 nm, 650 nm and 850 nm.
Źródło:
Teledetekcja Środowiska; 2007, 37; 3-50
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Monitoring of Land Surface Temperature from Landsat Imagery: A Case Study of Al-Anbar Governorate in Iraq
Autorzy:
Morsy, Salem
Ahmed, Shaker
Powiązania:
https://bibliotekanauki.pl/articles/2203961.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
land surface temperature
Landsat
single channel algorithm
NDVI
land use
land cover
classification
regression
Opis:
Land surface temperature (LST) estimation is a crucial topic for many applications related to climate, land cover, and hydrology. In this research, LST estimation and monitoring of the main part of Al-Anbar Governorate in Iraq is presented using Landsat imagery from five years (2005, 2010, 2015, 2016 and 2020). Images of the years 2005 and 2010 were captured by Landsat 5 (TM) and the others were captured by Landsat 8 (OLI/TIRS). The Single Channel Algorithm was applied to retrieve the LST from Landsat 5 and Landsat 8 images. Moreover, the land use/land cover (LULC) maps were developed for the five years using the maximum likelihood classifier. The difference in the LST and normalized difference vegetation index (NDVI) values over this period was observed due to the changes in LULC. Finally, a regression analysis was conducted to model the relationship between the LST and NDVI. The results showed that the highest LST of the study area was recorded in 2016 (min = 21.1°C, max = 53.2°C and mean = 40.8°C). This was attributed to the fact that many people were displaced and had left their agricultural fields. Therefore, thousands of hectares of land which had previously been green land became desertified. This conclusion was supported by comparing the agricultural land areas registered throughout the presented years. The polynomial regression analysis of LST and NDVI revealed a better coefficient of determination (R2) than the linear regression analysis with an average R2 of 0.423.
Źródło:
Geomatics and Environmental Engineering; 2023, 17, 3; 61--81
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ocena możliwości identyfikacji łąk produkcyjnych i ekologicznych z wykorzystaniem pojedynczego zdjęcia satelity Landsat
An asessment of the possibility of identyfying productive and ecological meadows from a single Landsat image
Autorzy:
Kosiński, K.
Hoffmann-Niedek, A.
Kozłowska, T.
Powiązania:
https://bibliotekanauki.pl/articles/338172.pdf
Data publikacji:
2012
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
klasyfikacja
Landsat
siedliska ekologiczne
siedliska produkcyjne
użytki zielone
classification
ecological habitats
grasslands
productive habitats
Opis:
W artykule przedstawiono możliwości identyfikacji produkcyjnych i ekologicznych siedlisk łąkowych na pojedynczym zdjęciu Landsat ETM+. Analizowano niezależnie dwa zdjęcia, pozyskane 10 września 1999 i 1 maja 2001 r. Podjęto próbę rozróżnienia siedlisk na podstawie par charakterystyk: kanałów spektralnych (ETM 3, 4, 5), kanału panchromatycznego (ETM8) i wskaźników różnicowych (NDVI - wskaźnik różnicowy obliczony z kanałów ETM4 i ETM3; ND(3,5) - wskaźnik różnicowy obliczony z kanałów ETM5 i ETM3), uzyskanych niezależnie z dwóch zdjęć. Z kategorią siedliskową związane są trzy pary charakterystyk obliczonych dla początku maja: ETM3 i NDVI, ETM4 i ETM5, jak również NDVI i ND(3,5). Jednak błędy klasyfikacji okazały się zbyt duże. Na zdjęciu wrześniowym nie stwierdzono różnic pomiędzy siedliskami w żadnej z par charakterystyk. Nie wyklucza to możliwości klasyfikacji siedlisk w trybie analizy wieloczynnikowej.
The paper presents possibilities of identification of productive and ecological meadows on a single Landsat ETM+ image. Two images acquired on 10 September 1999 and 1 May 2001 were analyzed independently. Attempt was undertaken to distinguish habitats based on the following pairs of characteristics: spectral channels (ETM 3, 4, 5), panchromatic channel (ETM8) and differential indexes (NDVI, ND(3,5)) obtained from each of the images separately. Three pairs of characteristics are correlated with the habitat category obtained at the beginning of May: ETM3 vs NDVI, ETM4 vs ETM5 and NDVI vs ND(3.5). However, classification errors were far too high. In the image obtained in September, there were no differences between the habitats in any pair of characteristics. However, the possibility of classification of habitats in the multivariate analysis mode is still not excluded.
Źródło:
Woda-Środowisko-Obszary Wiejskie; 2012, 12, 1; 71-82
1642-8145
Pojawia się w:
Woda-Środowisko-Obszary Wiejskie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sztucznych sieci neuronowych do aktualizacji map pokrycia terenu Corine
The use of the artificial neural networks to update the CORINE Land Cover maps
Autorzy:
Golenia, M.
Zagajewski, B.
Ochtyra, A.
Hościło, A.
Powiązania:
https://bibliotekanauki.pl/articles/204319.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
klasyfikacja
Corine Land Cover
Landsat
sztuczne sieci neuronowe
Warszawa
classification
CORINE Land Cover
artificial neural networks
Warsaw
Opis:
Aktualne mapy pokrycia terenu są podstawą wielu dyscyplin nauki oraz mają szerokie zastosowanie aplikacyjne. Jednym z problemów aktualizacji map jest proces aktualizacji danych. Teledetekcja dostarcza codziennie nowych zobrazowań satelitarnych, które mogą zaspokoić potrzeby aktualizacji baz danych. W niniejszym artykule autorzy przedstawiają metodę klasyfikacji pokrycia terenu sztucznymi sieciami neuronowymi fuzzy ARTMAP zgodnie z założeniami i legendą Corine Land Cover na podstawie danych satelitarnych Landsat, które wykorzystywane są do opracowania map pokrycia terenu. W artykule użyto jako danych referencyjnych i weryfikacyjnych najnowszą mapę Corine Land Cover (CLC) 2012. Do przeprowadzenia klasyfikacji symulatorem wykorzystano trzy zdjęcia satelitarne Landsat TM (21.04.2011, 05.06.2010, 27.08.2011). Obszarem badań były okolice Warszawy. Wynikami pracy symulatora są mapy klasyfikacji pokrycia terenu oraz macierze błędów klasyfikacji. Uzyskane wyniki potwierdzają, że sztuczne sieci neuronowe mogą z powodzeniem być wykorzystywane do aktualizacji map pokrycia terenu.
Modern land cover maps are the basis of many scientific disciplines and they are widely applied. One of the problems connected with the revision of maps is the data updating procedure. Remote Sensing daily provides us with the new satellite images, that can meet the needs of database updates. In this article the method of classification for land cover with the artificial, neural, fuzzy ARTMAP networks is presented by the authors in accordance with the objectives and legend of the CORINE Land Cover Map on the basis of the Landsat satellite data, which are used to elaborate the land cover maps. The latest CORINE Land Cover map 2012 polygons are used as the reference and verification data. Three satellite Landsat TM images of 21.04.2011, 05.06.2010, 27.08.2011 are processed by a fuzzy, artificial, neural network classificatory simulator. The area of research was Warsaw and its surrounding area. The results of this research are the classificatory land cover maps and error matrices. Acquired results confirm that the artificial neural networks can be successfully used for land cover updating.
Źródło:
Polski Przegląd Kartograficzny; 2015, T. 47, nr 3-4, 3-4; 257-266
0324-8321
Pojawia się w:
Polski Przegląd Kartograficzny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Initial evaluation of fused satellite images aplicability to vectorisation and classification
Wstępna ocena przydatności obrazów scalonych z różnych sensorów na potrzeby wektoryzacji i klasyfikacji ich treści
Autorzy:
Pirowski, T.
Baran, J.
Dzień, M.
Powiązania:
https://bibliotekanauki.pl/articles/385612.pdf
Data publikacji:
2009
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
integracja danych teledetekcyjnych
interpretacja wizualna
wektoryzacja
klasyfikacja
ocena przydatności
Landsat
IRS
satellite data fusion
visual assessment
vectorisation
classification
applicability evaluation
Opis:
The article presents results of integrating spectral images of lower resolution with higher resolution panchromatic images. The analysis was performed on Landsat and IRS images. Four different methods of integration were applied. The aim of the research was twofold: to evaluate pan-sharpened images from photo interpretation point of view (in the process of feature borders vectorisation) and to assess their applicability for supervised spectral classification procedures. In both cases the reference data were obtained from airborne orthophotomap.
W publikacji przedstawiono wyniki badań związanych z integracją danych spektralnych o niższej rozdzielczości przestrzennej z obrazami panchromatycznymi o wyższej rozdzielczości przestrzennej. Analizy przeprowadzono na danych Landsat i IRS. Testowano cztery metody integracji danych. Zrealizowano dwa cele badań: określono walory fotointerpretacyjne kompozycji barwnych o podwyższonej rozdzielczości w praktycznym aspekcie wektoryzacji granic obiektów oraz wstępnie oceniono przydatności scalonych obrazów do procedur nadzorowanej klasyfikacji spektralnej. Danych referencyjnych do oceny poprawności wektoryzacji i klasyfikacji dostarczyła ortofotomapa ze zdjęć lotniczych.
Źródło:
Geomatics and Environmental Engineering; 2009, 3, 4; 65-77
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Znaczenie pola powierzchni i długości obiektów w półautomatycznej klasyfikacji obiektowej użytków zielonych na zdjęciach satelitów serii LANDSAT
The influence of area and length of objects in semi-automated object classification of grasslands on LANDSAT images
Autorzy:
Kosiński, K.
Powiązania:
https://bibliotekanauki.pl/articles/132243.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
użytki zielone
teledetekcja
Landsat
wielkość
kształt
uwilgotnienie
siedlisko
klasyfikacja
sztuczne sieci neuronowe
grasslands
remote sensing
size
shape
habitat
humidity
object
classification
artificial neural network
Opis:
Semi-automatic method for object classification of the grassland procedure involves two stages: 1) the creation of image segments as a representation of natural spatial complexes, 2) classification of the segments. So far, the classification algorithms were used refer to the three categories of characteristics: spectral, panchromatic or geometric. In the first stage of the work segmentation were performed of the composition of the two satellite images Landsat7 acquired at different seasons of the year: in September 1999 and the beginning of May 2001. Panchromatic data were used for distinguishing complexes due to the greater (in comparison with spectral data) spatial resolution. In the area of grasslands landscape-vegetation complexes (Matuszkiewicz, 1990, Kosiński, Hoffmann -Niedek, Zawiła, 2006) were distinguished of approximately a hundred to a few hundred meters in length and of about 20 ÷ 200 panchromatic image pixels. Semi-automated delimitation of complexes were carried out under the visual control, using as auxiliary material aerial photographs and topographic maps. In the second stage (classification of segments) an attempt were taken to assess the suitability of selected geometrical features to distinguish grasslands in use (currently or potentially) from grasslands unfit for production use due to excessive or insufficient moisture. The classification algorithm used GIS tools for measuring area and length of segments and artificial neural networks as a tool for classification. The previous studies of the Piotrkowska Plain show that the complexes of meadows used differ from those abandoned in terms of size and shape of objects (Kosiński, Hoffmann- Niedek, 2006, Fig. 1). Hypothesis that area and length of the landscape -vegetation complex are cues of identification in relation to the use and moisture of grasslands. 43 complexes of the grassland have been established as training samples on the Piotrkowska Plain in the Pilsia valley. In order to avoid overfitting classification algorithm to data from the Piotrkowska Plain, in order to allow the application of the algorithm for another mezoregionu 10 complexes have been selected as a validation set in the Szczercowska valley. To evaluate the classification results 32 complexes have been collected from Szczercowska Basin (test set). All treining set objects were described in terrein. Validation and test set objects were classified by a more accurate metod (based on biteporal image: Kosiński, Hoffmann -Niedek, 2008) and checked at random in the field. Objects of learning, validation and test set have been grouped into five categories according to use and habitat moisture (Kosiński, Hoffmann -Niedek, 2008; Table 1). For learning neural networks fife categories of objects of the learning and validation set were generalised into the three classes. In the Szczercowska Valley combination of characteristics (area and length) of the abandoned complexes is more close to the meadows in use than on the Piotrkowska Plain (Table 2). Therefore, the classification algorithm of the Piotrkowska Plain can not be directly applied to Szczercowska Basin. To obtain the correct result of classification, the classes of test set has been interpreted differently than in the learning and validation sets (Table 3, Figure 2). In the test sample 3/4 of the 23 complexes of meadows potentially used were classified correctly, while of nine abandoned ones due to unfavorable moisture habitats correctly classified 2/3. Thus confirmed the working hypothesis. Application of artificial neural networks can cancel the designation of non parametric empirical indicators of the size and shape of the complexes (Fig. 1). Neural networks auto-uwilgotmatically builds a morpfometric model based on simple indicators such as area and length of the object. Two model types of artificial neural network have been tested: 1) multilayer perceptrons (MLP) wich use hyperplanes to divide up feature space, 2) radial basis function network (RBF) wich use hyperspheres. MLP networks have proved to be more suitable to build the model than the RBF network.
Źródło:
Teledetekcja Środowiska; 2009, 42; 35-41
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies