Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sets" wg kryterium: Wszystkie pola


Wyświetlanie 1-10 z 10
Tytuł:
Rough Sets Methods in Feature Reduction and Classification
Autorzy:
Świniarski, R. W.
Powiązania:
https://bibliotekanauki.pl/articles/908366.pdf
Data publikacji:
2001
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
rozpoznawanie obrazów
redukcja danych
rough sets
feature selection
classification
Opis:
The paper presents an application of rough sets and statistical methods to feature reduction and pattern recognition. The presented description of rough sets theory emphasizes the role of rough sets reducts in feature selection and data reduction in pattern recognition. The overview of methods of feature selection emphasizes feature selection criteria, including rough set-based methods. The paper also contains a description of the algorithm for feature selection and reduction based on the rough sets method proposed jointly with Principal Component Analysis. Finally, the paper presents numerical results of face recognition experiments using the learning vector quantization neural network, with feature selection based on the proposed principal components analysis and rough sets methods.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2001, 11, 3; 565-582
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Classification of Large Data Sets. Comparison of Performance of Chosen Algorithms
Klasyfikacja dużych zbiorów porównanie wydajności wybranych algorytmów
Autorzy:
Dudek, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/905663.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
clustering
classification
large data sets
Opis:
Researchers analyzing large (> 100,000 objects) data sets with the methods of cluster analysis often face the problem of computational complexity of algorithms, that sometimes makes it impossible to analyze in an acceptable time. Common solution of this problem is to use less computationally complex algorithms (like k-means), which in turn can in many cases give much worse results than for example algorithms using eigenvalues decomposition . The results of analysis of the actual sets of this type are therefore usually a compromise between quality and computational capabilities of computers. This article is an attempt to present the current state of knowledge on the classification of large datasets, and identify ways to develop and open problems.
Badacze analizujący przy pomocy metod analizy skupień duże (> 100.000 obiektów) zbiory danych, stają często przed problemem złożoności obliczeniowej algorytmów, uniemożliwiającej niekiedy przeprowadzenie analizy w akceptowalnym czasie. Jednym z rozwiązań tego problemu jest stosowanie mniej złożonych obliczeniowo algorytmów (hierarchiczne aglomeracyjne, k-średnich), które z kolei mogą w wielu sytuacjach dawać zdecydowanie gorsze rezultaty niż np. algorytmy wykorzystujące dekompozycję względem wartości własnych. Rezultaty rzeczywistych analiz tego typu zbiorów są więc zazwyczaj kompromisem pomiędzy jakością a możliwościami obliczeniowymi komputerów. Artykuł jest próbą przedstawienia aktualnego stanu wiedzy na temat klasyfikacji dużych zbiorów danych oraz wskazania dróg rozwoju i problemów otwartych.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2013, 285
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Selected problems of evaluation and classification of historical buildings using rough sets
Wybrane problemy wartościowania i klasyfikacji budowli zabytkowych z wykorzystaniem zbiorów przybliżonych
Autorzy:
Czajkowski, K.
Powiązania:
https://bibliotekanauki.pl/articles/408205.pdf
Data publikacji:
2017
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
heritage preservation
valuation
classification
rough sets
ochrona dziedzictwa
wartościowanie
klasyfikacja
zbiory przybliżone
Opis:
The paper presents the problems associated with multicriteria evaluation of historic buildings. The capabilities of modeling the monuments in order to use the Rough Sets approach for their evaluation were presented. The problems of selection criteria for the evaluation and taking into account the structure of the object, as well as the problem of discretization and its impact on the generating of the rules were discussed.
W artykule zaprezentowano problemy związane z wielokryterialną oceną budowli zabytkowych. Przedstawione zostały możliwości modelowania obiektu zabytkowego w celu wykorzystania podejścia Zbiorów Przybliżonych dla ich wartościowania. Omówiono problemy doboru kryteriów oceny oraz uwzględnienia struktury obiektu, jak również problem dyskretyzacji i jego wpływ na generowanie reguł.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2017, 7, 4; 5-10
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On classification with missing data using rough-neuro-fuzzy systems
Autorzy:
Nowicki, R. K.
Powiązania:
https://bibliotekanauki.pl/articles/907774.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
zbiór rozmyty
struktura neuronowo-rozmyta
klasyfikacja
brakujące dane
fuzzy sets
neuro-fuzzy architectures
classification
missing data
Opis:
The paper presents a new approach to fuzzy classification in the case of missing data. Rough-fuzzy sets are incorporated into logical type neuro-fuzzy structures and a rough-neuro-fuzzy classifier is derived. Theorems which allow determining the structure of the rough-neuro-fuzzy classifier are given. Several experiments illustrating the performance of the roughneuro-fuzzy classifier working in the case of missing features are described.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2010, 20, 1; 55-67
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deterministic and nondeterministic decision rules in classification process
Autorzy:
Paszek, P.
Marszał-Paszek, B.
Powiązania:
https://bibliotekanauki.pl/articles/333940.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
klasyfikacja
tablice decyzyjne
niedeterministyczne reguły decyzyjne
zbiory przybliżone
zasada klasyfikatora
classification
decision tables
nondeterministic decision rules
rough sets
rule-based classifiers
Opis:
In this paper an algorithm of calculating nondeterministic decision rules from the decision table was presented. The algorithm uses additional conditions imposed on rules. This is a greedy algorithm. The nondeterministic decision rules were used in the process of classification of new examples, for medical data sets. The decision tables from the UCI Machine Learning Repository were used. The achieved results allow us to state that nondeterministic decision rules can be used for improving the quality of classification.
Źródło:
Journal of Medical Informatics & Technologies; 2010, 15; 87-92
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nondeterministic decision rules in classification process for medical data
Autorzy:
Marszał-Paszek, B.
Paszek, P.
Powiązania:
https://bibliotekanauki.pl/articles/333507.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
niedeterministyczne reguły decyzyjne
klasyfikacja
tablice decyzyjne
zbiory przybliżone
zasada klasyfikatora
nondeterministic decision rules
classification
decision tables
rough sets
rule-based classifiers
Opis:
In the paper, we discuss nondeterministic rules in decision tables, called the second type nondeterministic rules. They have a few decisions values on the right hand side but on the left hand side only one attribute that has two values. We show that these kinds of rules can be used for improving the quality of classification. It is important in rule-based diagnosis support systems, where classification error can lead to serious consequences. The well known greedy strategy to construct the new nondeterministic rules, have been proposed. Additionally, based on deterministic and nondeterministic (second type) rules, classification algorithm with polynomial computational complexity has been developed. This rule-based classifier was tested on the group of decision tables, containing medical data, from the UCI Machine Learning Repository. The reported results of experiments showing that by combining rule-based classifier based on deterministic rules with second type nondeterministic rules give us possibility to improve the classification quality.
Źródło:
Journal of Medical Informatics & Technologies; 2011, 17; 59-64
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rough Set Application for the Tax Payer Classification Rules
Zastosowanie teorii zbiorów przybliżonych w zadaniu klasyfikacji podatników
Autorzy:
Misztal, L.
Powiązania:
https://bibliotekanauki.pl/articles/156046.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
zbiory przybliżone
eksploracja danych
klasyfikacja
ekstrakcja reguł
reguły decyzyjne
rough sets
data mining
classification
rules extraction
decision rules
Opis:
Classification of the tasks for real-world problems becomes possible because of creation and use of more efficient IT systems. It also targets rough set methods as well described with solid mathematical basis for classification tasks. In the presented paper the application of rough set theory with the usage of significance of attributes and decision rule sets for classification of taxpayers is described. There are taken into account the negative or positive results of taxation control, and specific features describing payers are considered. Appropriate choice of data, building the model and its application leads to the specified goal reaching, with better accuracy in comparison to "intuitive" choice. Simultaneously it becomes possible to extract decision rules in the linguistic form, what gives opportunity for easier interpretation of obtained results. As a result of the solution application the more accurate selection of tax payers is obtained. This is of significant meaning for the tax authorities, and this leads for the better observance of the tax law.
Rozwiązywanie zadań klasyfikacji dla rzeczywistych problemów stało się możliwe dzięki rozwojowi wydajniejszych systemów informatycznych. Dotyczy to również teorii zbiorów przybliżonych dla zadań klasyfikacji. W przedstawionej publikacji zastosowano zbiory przybliżone, które mają ugruntowaną teorię bazującą na rozszerzeniu teorii zbiorów i definiującą dolne oraz górne przybliżenie, oraz wyznaczającą tabelę decyzyjną do klasyfikacji. Metodę użyto do obliczeń istotności atrybutów oraz reguł decyzyjnych opisujących klasyfikację podatników ze względu na pozytywny lub negatywny wynik kontroli, przy uwzględnieniu specyficznych cech ich opisujących. Odpowiedni dobór danych, budowa modelu oraz jego użycie umożliwiło osiągnięcia zadanego celu ze zwiększoną dokładnością w stosunku do "intuicyjnego" wyboru. Wykorzystanie zbiorów przybliżonych, które wyznaczają wyniki końcowe klasyfikacji w postaci zbioru reguł umożliwiło ich ekstrakcję w łatwo interpretowalnej formie lingwistycznej. W publikacji zastosowano autorskie rozwiązanie programowe bazujące na kolekcjach, tablicach oraz obiektach pośrednich, zaimplementowane dla bazy danych Oracle, dzięki któremu zrealizowano zadanie oraz przedstawiono rezultaty. Dzięki uzyskanym wynikom bazującym na modelu opartym na użytej metodzie możliwe staje się dokładniejsze typowanie podatników funkcjonujących w polskim systemie prawnym i mających problemy podatkowe, których należy poddać kontroli. Tym samym zwiększa się skuteczność egzekwowania prawa podatkowego.
Źródło:
Pomiary Automatyka Kontrola; 2009, R. 55, nr 10, 10; 796-798
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rough set based processing of inconsistent information in decision analysis
Autorzy:
Słowiński, R.
Stefanowski, J.
Greco, S.
Matarazzo, B.
Powiązania:
https://bibliotekanauki.pl/articles/206765.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
klasyfikacja
kombinatoryka
teoria decyzji
teoria gier
classification
decision analysis
knowledge based systems
multi-criteria decision analysis
rough sets
rule induction
Opis:
Inconsistent information is one of main difficulties in the explanation and recommendation tasks of decision analysis. We distinguish two kinds of such information inconsistencies : the first is related to indiscernibility of objects described by attributes defined in nominal or ordinal scales, and the other follows from violation of the dominance principle among attributes defined on preference ordered ordinal or cardinal scales, i.e. among criteria. In this paper we discuss how these two kinds of inconsistencies are handled by a new approach based on the rough sets theory. Combination of this theory with inductive learning techniques leads to generation of decision rules from rough approximations of decision classes. Particular attention is paid to numerical attribute scales and preference-ordered scales of criteria, and their influence on the syntax of induced decision rules.
Źródło:
Control and Cybernetics; 2000, 29, 1; 379-404
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
New frontiers of analysis, interpretation and classification of biomedical signals: a computational intelligence framework
Autorzy:
Gacek, A.
Powiązania:
https://bibliotekanauki.pl/articles/333497.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
sygnał EKG
inteligencja obliczeniowa
zbiory rozmyte
granulki informacji
ziarnista informatyka
interpretacja
klasyfikacja
współdziałanie
ECG signals
computational intelligence
neurocomputing
fuzzy sets
information granules
granular computing
interpretation
classification
interpretability
Opis:
The methods of Computational Intelligence (CI) including a framework of Granular Computing, open promising research avenues in the realm of processing, analysis and interpretation of biomedical signals. Similarly, they augment the existing plethora of "classic" techniques of signal processing. CI comes as a highly synergistic environment in which learning abilities, knowledge representation, and global optimization mechanisms and this essential feature is of paramount interest when processing biomedical signals. We discuss the main technologies of Computational Intelligence (namely, neural networks, fuzzy sets, and evolutionary optimization), identify their focal points and elaborate on possible limitations, and stress an overall synergistic character, which ultimately gives rise to the highly symbiotic CI environment. The direct impact of the CI technology on ECG signal processing and classification is studied with a discussion on the main directions present in the literature. The design of information granules is elaborated on; their design realized on a basis of numeric data as well as pieces of domain knowledge is considered. Examples of the CI-based ECG signal processing problems are presented. We show how the concepts and algorithms of CI augment the existing classification methods used so far in the domain of ECG signal processing. A detailed construction of granular prototypes of ECG signals being more in rapport with the diversity of signals analyzed is discussed as well. ECG signals, Computational Intelligence, neurocomputing, fuzzy sets, information granules, Granular Computing, interpretation, classification, interpretability.
Źródło:
Journal of Medical Informatics & Technologies; 2011, 17; 23-36
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Methodology of rough-set-based classification and sorting with hierarchical structure of attributes and criteria
Metodyka klasyfikacji i sortowania z hierarchiczną strukturą atrybutów przy pomocy zbiorów przybliżonych
Autorzy:
Dembczyński, K.
Greco, S.
Słowiński, R.
Powiązania:
https://bibliotekanauki.pl/articles/205554.pdf
Data publikacji:
2002
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
klasyfikacja
model reguł decyzyjnych preferencji
sortowanie
struktura hierarchiczna
zadanie wielokryterialnego podejmowania decyzji
zbiory przybliżone
classification
decision rule preference model
hierarchical structure
multicriteria decision problems
rough sets
sorting
Opis:
We consider a hierarchical classification problem involving sets of attributes and criteria. The problem of classification concerns an assignment of a set of objects to pre-defined classes. The classification to preference-ordered classes is called sorting. The objects are described by two sorts of attributes: criteria and regular attributes, depending on whether the attribute domain is preference-ordered or not. The hierarchical classification and sorting is made in finite number of steps due to hierarchical structure of regular attributes and criteria in the form of a tree. We propose a methodology based on the decision rule preference model. The model is constructed by inductive learning from examples of hierarchical decisions made by the Decision Maker on a reference set of objects. To deal with inconsistencies appearing in decision examples we adapt the rough set approach to the hierarchical classification and sorting problems. Due to inconsistency and their propagation from the bottom to the top of the hierarchy, the description of an object on a particular attribute may be not a simple value but either a subset of a regular attribute domain or an interval on a criterion scale. An example illustrates the methodology presented.
Rozpatrujemy problem klasyfikacji hierarchicznej ze zbiorami atrybutów i kryteriów. Zadanie klasyfikacji dotyczy przydziału zbioru obiektów do z góry zdefiniowanych klas. Klasyfikacja do klas uporządkowanych według relacji preferencji nazywana jest sortowaniem. Obiekty są opisane przez dwa rodzaje atrybutów: kryteria i właściwe atrybuty, w zależności od tego, czy dziedzina atrybutu jest uporządkowana względem preferencji, czy też nie. Hierarchiczna klasyfikacja i sortowanie wykonywane są w skończonej liczbie kroków dzięki hierarchicznej strukturze atrybutów właściwych i kryteriów, w postaci drzewa. Proponujemy metodyk(c) opartą na modelu reguł decyzyjnych co do preferencji. Model jest konstruowany poprzez uczenie indukcyjne na przykładach decyzji hierarchicznych podejmowanych przez decydenta w stosunku do zbioru odniesienia obiektów. Aby poradzić sobie z niespójnościami pojawiającymi się w przykładach decyzji zaadaptowaliśmy podejście zbiorów przybliżonych do zadania hierarchicznej klasyfikacji i sortowania. Wobec niespójności i ich propagacji od dołu do góry hierarchii, opis obiektu w ramach konkretnego atrybutu może nie być pojedynczą wartością, ale bądź to podzbiorem dziedziny atrybutu właściwego bądź to przedziałem na skali kryterium. Zaproponowaną metodykę zilustrowaliśmy przykładem.
Źródło:
Control and Cybernetics; 2002, 31, 4; 891-920
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-10 z 10

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies