Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "przetwarzanie i analiza obrazów" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Przetwarzanie wstępne i analiza obrazu na użytek lokalizacji twarzy
Automatic face detection method
Autorzy:
Majkowski, A.
Kołodziej, M.
Rak, R. J.
Nasternak, M
Powiązania:
https://bibliotekanauki.pl/articles/152848.pdf
Data publikacji:
2014
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
detekcja twarzy
przetwarzanie obrazów
klasyfikacja
face detection
image processing
classification
Opis:
W artykule zaprezentowany jest algorytm automatycznej detekcji twarzy w obrazie statycznym. Detektor ma osiągać najwyższą skuteczność przy znajdowaniu twarzy możliwie niepochylonych i patrzących na wprost kamery. Wielkość wykrywanych twarzy musi być (z pewnymi odchyleniami) zgodna z rozmiarem twarzy zawartych na obrazach zastosowanych do uczenia klasyfikatora. Obrazy wejściowe mogą być kolorowe lub czarno-białe. Nie ma limitu co do liczby twarzy znajdujących się na obrazie.
The aim of this work is to design and implement a face detection algorithm in static images. The detector have to achieve the best results in finding possible not inclined faces of people looking directly at the camera. The authors have proposed an algorithm which operation is based on the appearance (features) of the face. Block diagram of the proposed face detector is given in Fig. 1. In the first stage, the image containing the face is subjected to preprocessing in which normalization is the most important. Normalization aims to unify a variety of analyzed images. We have used here a conversion of colors to gray levels and stretching and equalization of image histogram. Thus prepared image is processed by the appropriate face detection algorithm, which consists of pre-selection and classification. In order to train the classifier the authors created a database of images consisting of two major categories: containing faces and do not contain faces. As a collection of images that include faces there have been used Olivetti DB ORL database [1]. Final processing step is to get rid of the multiple detection of the same faces. As a result of the algorithm we obtain the location of all faces in the input image (Fig. 4). The size of detected faces should be (with some variations) in accordance with the size of images used to train the classifier. Input images can be color or black and white. There is no limit to the number of faces in an image.
Źródło:
Pomiary Automatyka Kontrola; 2014, R. 60, nr 3, 3; 132-135
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of efficiency of extraction of built-up areas in aerial images using fractal analysis and morphological granulometry
Porównanie efektywności wyodrębniania terenów zabudowanych na obrazach lotniczych przy pomocy analizy fraktalnej i granulometrii morfologicznej
Autorzy:
Kupidura, P.
Popławski, W.
Sitko, P.
Powiązania:
https://bibliotekanauki.pl/articles/132365.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
remote sensing
mathematical morphology
fractal analysis
classification
digital image processing
teledetekcja
morfologia matematyczna
analiza fraktalna
klasyfikacja
cyfrowe przetwarzanie obrazów
Opis:
The paper presents a comparison of results of the automatic extraction of built-up areas, based on fractal analysis and granulometric maps, in the aerial images. Built-up areas as a land-use class can be clearly seen in an aerial or satellite image, due to its high granularity, but for the same reason they are very difficult to extract using a “traditional” non-contextual, pixel-based classification. Both approaches presented in the paper, using fractal analysis and morphological granulometry, base generally on a pixel-based classification, but performed on images reviously processed using these two types of processes. Fractal analysis consists in an empirical computing of fractal dimension of parts of an image, using a box-counting method. Such an approach generates an image where pixel values are equal to a fractal dimension values of their neighbourhood. Since we can interpret a fractal dimension as a level of granularity, a simple reclassification of such an image can improve a performance of an automatic extraction of built-up area effectively. The approach based on a morphological granulometry creates a number of granulometric maps – images where pixel values mean an amount of objects of certain size in a set neighbouring fragment of an image. This way a number of these images can be processed using a pixel-based classification, to perform an effective extraction of built-up areas in an image. The results of the presented approaches have been compared to the reference mask obtained basing on a visual interpretation of the image.
Źródło:
Teledetekcja Środowiska; 2015, 52; 29-37
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies