Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "detection process" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
The Hough transform in the classification process of inland ships
Autorzy:
Bobkowska, Katarzyna
Wawrzyniak, Natalia
Powiązania:
https://bibliotekanauki.pl/articles/135214.pdf
Data publikacji:
2019
Wydawca:
Akademia Morska w Szczecinie. Wydawnictwo AMSz
Tematy:
Hough transform
k Nearest Neighbors (kNN)
image processing
classification
ship recognition
line detection
Opis:
This article presents an analysis of the possibilities of using image processing methods for feature extraction that allows kNN classification based on a ship’s image delivered from an on-water video surveillance system. The subject of the analysis is the Hough transform which enables the detection of straight lines in an image. The recognized straight lines and the information about them serve as features in the classification process. Above all, this approach allows ships to be recognized, which can then be characterized by a specific representation and shape. Recreational units that are often seen on inland waters were classified correctly using this method. Each analyzed camera image was previously prepared – brought to the form where the ship was visible from the side and the background removed (they were monochromatic – white). The results obtained in this work will allow for the development of the final ship classification method based on camera images. This method is a significant part of the emerging system prototype, which is implemented as part of the Automatic Ship Recognition and Identification (SHREC) project.
Źródło:
Zeszyty Naukowe Akademii Morskiej w Szczecinie; 2019, 58 (130); 9-15
1733-8670
2392-0378
Pojawia się w:
Zeszyty Naukowe Akademii Morskiej w Szczecinie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Data Mining Approach for Analysis of a Wire Electrical Discharge Machining Process
Autorzy:
Dandge, Shruti Sudhakar
Chakraborty, Shankar
Powiązania:
https://bibliotekanauki.pl/articles/2023974.pdf
Data publikacji:
2021-09
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
wire electrical discharge machining
data mining
classification and regression tree
chi-squared
automatic interaction detection
classification
Opis:
Wire electrical discharge machining (WEDM) is a non-conventional material-removal process where a continuously travelling electrically conductive wire is used as an electrode to erode material from a workpiece. To explore its fullest machining potential, there is always a requirement to examine the effects of its varied input parameters on the responses and resolve the best parametric setting. This paper proposes parametric analysis of a WEDM process by applying non-parametric decision tree algorithm, based on a past experimental dataset. Two decision tree-based classification methods, i.e. classification and regression tree (CART) and Chi-squared automatic interaction detection (CHAID) are considered here as the data mining tools to examine the influences of six WEDM process parameters on four responses, and identify the most preferred parametric mix to help in achieving the desired response values. The developed decision trees recognize pulse-on time as the most indicative WEDM process parameter impacting almost all the responses. Furthermore, a comparative analysis on the classification performance of CART and CHAID algorithms demonstrates the superiority of CART with higher overall classification accuracy and lower prediction risk.
Źródło:
Management and Production Engineering Review; 2021, 13, 3; 116-128
2080-8208
2082-1344
Pojawia się w:
Management and Production Engineering Review
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies