Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "jerk" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
A new 3-D jerk chaotic system with two cubic nonlinearities and its adaptive backstepping control
Autorzy:
Vaidyanathan, S.
Powiązania:
https://bibliotekanauki.pl/articles/229916.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
chaos
chaotic systems
jerk systems
chaos control
adaptive control
backstepping control
synchronization
Opis:
This paper presents a new seven-term 3-D jerk chaotic system with two cubic nonlinearities. The phase portraits of the novel jerk chaotic system are displayed and the qualitative properties of the jerk system are described. The novel jerk chaotic system has a unique equilibrium at the origin, which is a saddle-focus and unstable. The Lyapunov exponents of the novel jerk chaotic system are obtained as L1 = 0:2974, L2 = 0 and L3 = −3:8974. Since the sum of the Lyapunov exponents of the jerk chaotic system is negative, we conclude that the chaotic system is dissipative. The Kaplan-Yorke dimension of the new jerk chaotic system is found as DKY = 2:0763. Next, an adaptive backstepping controller is designed to globally stabilize the new jerk chaotic system with unknown parameters. Moreover, an adaptive backstepping controller is also designed to achieve global chaos synchronization of the identical jerk chaotic systems with unknown parameters. The backstepping control method is a recursive procedure that links the choice of a Lyapunov function with the design of a controller and guarantees global asymptotic stability of strict feedback systems. MATLAB simulations are shown to illustrate all the main results derived in this work.
Źródło:
Archives of Control Sciences; 2017, 27, 3; 409-439
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new modified WINDMI jerk system with exponential and sinusoidal nonlinearities, its bifurcation analysis, multistability, circuit simulation and synchronization design
Autorzy:
Mohamed, Mohamad Afendee
Vaidyanathan, Sundarapandian
Hannachi, Fareh
Sambas, Aceng
Darwin, P.
Powiązania:
https://bibliotekanauki.pl/articles/27324008.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
chaos
jerk systems
chaotic systems
Lyapunov exponents
bifurcation
multistability
circuit simulation
backstepping control
Opis:
In this work, a new 3-D modified WINDMI chaotic jerk system with exponential and sinusoidal nonlinearities is presented and its dynamical behaviours and properties are investigated. Firstly, some properties of the system are studied such as equilibrium points and their stability, Lyapunov exponents and Kaplan-Yorke dimension. Also, we study the new jerk system dynamics using numerical simulations and analyses, including phase portraits, Lyapunouv exponent spectrum, bifurcation diagram and Poincaré map, 0-1 test. Next, we exhibit that the new 3-D chaotic modified WINDMI jerk system has multistability with coexisting chaotic attractors. Moreover, we design an electronic circuit using MultiSim 14.1 for real implementation of the modified WINDMI chaotic jerk system. Finally, we design an active synchronization scheme for the complete synchronization of the modified WINDMI chaotic jerk systems via backstepping control.
Źródło:
Archives of Control Sciences; 2023, 33, 4; 711--735
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies