- Tytuł:
- On the nonlocal interaction range for stability of nanobeams with nonlinear distribution of material properties
- Autorzy:
- Jankowski, Piotr
- Powiązania:
- https://bibliotekanauki.pl/articles/2105997.pdf
- Data publikacji:
- 2022
- Wydawca:
- Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
- Tematy:
-
nanobeam
FGM
nonlocal strain gradient theory
buckling
piezoelectric effect - Opis:
- The present study analyses the range of nonlocal parameters’ interaction on the buckling behaviour of nanobeam. The intelligent nonhomogeneous nanobeam is modelled as a symmetric functionally graded (FG) core with porosity cause nonlinear distribution of material parameters. The orthotropic face-sheets are made of piezoelectric materials. These kinds of structures are widely used in nanoelectromechanical systems (NEMS). The nanostructure model satisfies the assumptions of Reddy third-order beam theory and higher-order nonlocal elasticity and strain gradient theory. This approach allows to predict appropriate mechanical response of the nanobeam regardless of thin or thick structure, in addition to including nano-sized effects as hardening and softening. The analysis provided in the present study focuses on differences in results for nanobeam stability obtained based on classical and nonlocal theories. The study includes the effect of diverse size-dependent parameters, nanobeams’ length-to-thickness ratio and distributions of porosity and material properties through the core thickness as well as external electro-mechanical loading. The results show a dependence of nonlocal interaction range on geometrical and material parameters of nanobeam. The investigation undertaken in the present study provides an interpretation for this phenomenon, and thus aids in increasing awareness of nanoscale structures’ mechanical behaviour.
- Źródło:
-
Acta Mechanica et Automatica; 2022, 16, 2; 151--161
1898-4088
2300-5319 - Pojawia się w:
- Acta Mechanica et Automatica
- Dostawca treści:
- Biblioteka Nauki