Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "bounded univalent functions" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Convolution conditions for bounded \(\alpha\)-starlike functions of complex order
Autorzy:
Lashin, A. Y.
Powiązania:
https://bibliotekanauki.pl/articles/747284.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
Univalent functions
bounded starlike functions of complex order
bounded convex functions of complex order
\(\alpha\)-starlike functions
Opis:
Let \(A\) be the class of analytic functions in the unit disc \(U\) of the complex plane \(\mathbb{C}\) with the normalization \(f(0)=f^{^{\prime }}(0)-1=0\). We introduce a subclass \(S_{M}^{\ast }(\alpha ,b)\) of \(A\), which unifies the classes of bounded starlike and convex functions of complex order. Making use of Salagean operator, a more general class \(S_{M}^{\ast }(n,\alpha ,b)\) (\(n\geq 0\)) related to \(S_{M}^{\ast }(\alpha ,b)\) is also considered under the same conditions. Among other things, we find convolution conditions for a function \(f\in A\) to belong to the class \(S_{M}^{\ast }(\alpha ,b)\). Several properties of the class \(S_{M}^{\ast }(n,\alpha ,b)\) are investigated.
Źródło:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica; 2017, 71, 1
0365-1029
2083-7402
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies