Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Małachowski, J." wg kryterium: Autor


Wyświetlanie 1-5 z 5
Tytuł:
Numerical investigations of terrain vehicle tire subjected to blast wave
Autorzy:
Baranowski, P.
Małachowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/243723.pdf
Data publikacji:
2011
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
blast wave
finite element analysis
SPH
JWL
tire
vehicle suspension system
vehicle suspension
Opis:
In this paper a numerical model of a terrain vehicle suspension system development process is presented. In the performed studies the suspension system with and without a simplified motor-car body was taken into consideration. Geometry of the tire, wheel and system elements were achieved using reverse engineering technology. Moreover, with the assistance of a microscope and an X-ray device it was possible to achieve the exact tire cords pattern, which in the next stages was implemented into the FE model. Subsequently, numerical simulations of both cases were performed simulating the TNT explosion under a wheel. The non-linear dynamic analyses were performed using the LS-DYNA code. To solve both presented cases the explicit central difference scheme with modified time integration of the equation of motion was implemented. Computations of blast wave propagation were carried out with the Smooth Particle Hydrodynamics (SPH) method with Jones Wilkins Lee (JWL) equation of state defining the explosive material. Obtained results have shown different suspension system elements damage and tire destruction characteristic, which come from blast wave reflection of the motor-car body surface.
Źródło:
Journal of KONES; 2011, 18, 1; 23-30
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
I-beam structure under blast loading-Eulerian mesh density study
Autorzy:
Mazurkiewicz, Ł.
Małachowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/245483.pdf
Data publikacji:
2011
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
blast wave
FEM
Eulerian mesh
Opis:
Dynamic response of an I-beam structure subjected to shock wave produced by the detonation of high explosive (HE) materials is presented in this paper. LS-DYNA, a 3-D explicit, finite element computer code is used to study this behaviour. A coupled analysis between Lagrangian formulation (solid material) and Eulerian formulation (gas medium) was performed. The latest extensive research in this area indicates that the finite element analyses of such problems require complex meshes for Euler and Lagrange formulation. This research is focused on Euler mesh density influence on coupled analysis results. The principal objective of this paper is to compare various mesh density Eulerian models in respect to accuracy and computing time and asses the limit of element size. The Eulerian domains (Air and HE) were developed with various element size from 10 mm up to 30 mm. Results from all the analysis cases show how the Eulerian mesh element size influences on the global response of the column. Models with coarse meshes give much lower dynamic response then models with finer meshes. The resultant velocity vectors were also presented to illustrate the characteristic of blast wave propagation. Moreover the numerical models computational efficiency was compared are respect of CPU Time. Models with complex meshes (below 20 mm) are very computationally expensive.
Źródło:
Journal of KONES; 2011, 18, 3; 245-252
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of selected structural components subjected to blast wave
Autorzy:
Mazurkiewicz, Ł.
Małachowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/248066.pdf
Data publikacji:
2012
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
ALE formulation
blast wave
dynamic response
structural component
Opis:
The phenomenon of high-energy explosion of a substance such as the mixture of flammable gases, explosives, etc. is highly exothermic chemical reaction that causes a blast wave consisting of hot gases at high pressure. Very complex nature of the phenomenon of detonation, affects the need for advanced methods of analysis. In the present work analysis of two steel columns (I-section and tubular section) subjected to the blast wave are presented. The columns have similar values of the moments of inertia and mass per unit length. To describe the complex phenomena occurring in gas medium the Eulerian formulation was used. The steel structures were described using Lagrangian formulation. Interaction between domains was achieved by numerical coupling algorithm with implemented penalty function. From the results from all the analysis cases, the dynamic response of structural elements was obtained. Permanent deformation and the amount of absorbed energy are of special interest in this study. The resultant velocity vectors were also presented to illustrate the characteristic of blast wave propagation.
Źródło:
Journal of KONES; 2012, 19, 1; 267-272
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of numerical testing methods in terms of impulse loading applied to structural elements
Autorzy:
Mazurkiewicz, Ł.
Małachowski, J.
Baranowski, P.
Damaziak, K.
Powiązania:
https://bibliotekanauki.pl/articles/280777.pdf
Data publikacji:
2013
Wydawca:
Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej
Tematy:
blast wave
FEM
Eulerian mesh
Opis:
This paper presents comparison of numerical testing methods of an impulse loading which comes from a detonation process, i.e. blast wave propagation in a gas medium. Investigations were carried out using an analytical and numerical model based on the Finite Element Method. In order to reduce computational time, the substitute analytical model with one degree of freedom was implemented, which replaced a chosen actual system (I-section steel column). For structure modelling, the constitutive model was used, which included the strain rate effect. From the performed analyses, an acceptable similarity was noticed, although the discrete model due to greater forces gave inflated results. Nevertheless, it should be pointed out that simplified methods do not take any wave and flow around effects into consideration, which have an influence on the dynamical response of the structure and are possible to implement in the gas medium coupling.
Źródło:
Journal of Theoretical and Applied Mechanics; 2013, 51, 3; 615-625
1429-2955
Pojawia się w:
Journal of Theoretical and Applied Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Numerical analysis of I-beam supporting structure with multimaterial protective panel - parametric study
Autorzy:
Damaziak, K.
Mazurkiewicz, Ł.
Małachowski, J.
Klasztorny, M.
Baranowski, P.
Powiązania:
https://bibliotekanauki.pl/articles/246508.pdf
Data publikacji:
2012
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
ALE formulation
blast wave
dynamic response
protective panel
Opis:
Dynamic response of an I-beam supporting structure subjected to shock wave produced by the detonation of high explosive materials is presented in this paper. Dynamic response of structural components in different load cases-with multimaterial panel protection and without protection, subjected to blast wave from various charge weight and various distance stand-off was determined. LS-DYNA, a 3-D explicit, finite element computer code with Lagrangian-Eulerian coupling was used to study this behaviour. Also initial static load was taken into account as pre-stress field present in the column obtained using dynamic relaxation procedure. The protective panel is composed of fibreglass composite and aluminium foam. The composite orthotropic properties and the failure criteria for fibre and matrix damage as well as the stress-volumetric strain curve for metallic foam were taken into account. The previous study shows that critical to the structure durability are the plastic strains and the structure failure caused by high deformation. Results of the analyses indicate that application of the blast panel around the supporting structure increase the resistance and significantly reduce the plastic deformation of the structure. The pillar without protection can be destroyed by 2 kg TNT placed close to the structure. Analysed beam covered by the blast panel can resist over three times bigger charge without significant deformation of the structure.
Źródło:
Journal of KONES; 2012, 19, 3; 93-102
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies