Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "death process" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Simulating an infinite mean waiting time
Autorzy:
Bartoszek, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/953256.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
birth-death process
infinite mean
phylogenetic tree
power-law distribution
return time
drzewo logenetyczne
Opis:
W pracy rozważany jest mieszany sposób symulowania czasu powrotu do stanu początkowego określonego krytycznego procesu narodzin i śmierci. Ten czas powrotu ma nieskończoną wartość oczekiwaną przy czym jego asymptotyczny rozkład jest potęgowy. Zatem dopóki symulowany czas nie przekroczy pewnej granicznej wartości proces jest symulowany bezpośrednio. W chwili przekroczenia tej wartości granicznej czas powrotu jest losowany z ogona tego rozkładu potęgowego.
We consider a hybrid method to simulate the return time to the initial state in a critical-case birth-death process. The expected value of this return time is infinite, but its distribution asymptotically follows a power-law. Hence, the simulation approach is to directly simulate the process, unless the simulated time exceeds some threshold and if it does, draw the return time from the tail of the power law.
Źródło:
Mathematica Applicanda; 2019, 47, 1
1730-2668
2299-4009
Pojawia się w:
Mathematica Applicanda
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Asymptotic analysis of a closed G-network of unreliable nodes
Autorzy:
Rusilko, Tatiana
Powiązania:
https://bibliotekanauki.pl/articles/2175521.pdf
Data publikacji:
2022
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
G-network
unreliable queueing systems
positive customer
negative customer
birth-death process
asymptotic analysis
queueing network
sieć G
proces narodzin i śmierci
analiza asymptotyczna
sieci kolejkowe
Opis:
A closed exponential queueing G-network of unreliable multi-server nodes was studied under the asymptotic assumption of a large number of customers. The process of changing the number of functional servers in network nodes was considered as the birth-death process. The process of changing the number of customers at the nodes was considered as a continuous-state Markov process. It was proved that its probability density function satisfies the Fokker-Planck-Kolmogorov equation. The system of differential equations for the first-order and second-order moments of this process was derived. This allows us to predict the expectation, the variance and the pairwise correlation of the number of customers in the G-network nodes both in the transient and steady state.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2022, 21, 2; 91--102
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Formulas for average transition times between states of the Markov birth-death process
Autorzy:
Zhernovyi, Yuriy
Kopytko, Bohdan
Powiązania:
https://bibliotekanauki.pl/articles/2175497.pdf
Data publikacji:
2021
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
birth-death process
Markov models
mean transition time
mean time spent in the group of states
queueing systems
reliability model
proces narodzin i śmierci
modele Markova
średni czas przejścia
średni czas spędzony w grupie stanów
systemy kolejkowe
model niezawodności
Opis:
In this paper, we consider Markov birth-death processes with constant intensities of transitions between neighboring states that have an ergodic property. Using the exponential distributions properties, we obtain formulas for the mean time of transition from the state i to the state j and transitions back, from the state j to the state i. We found expressions for the mean time spent outside the given state i, the mean time spent in the group of states (0,...,i-1) to the left from state i, and the mean time spent in the group of states (i+1,i+2,...) to the right. We derive the formulas for some special cases of the Markov birth-death processes, namely, for the Erlang loss system, the queueing systems with finite and with infinite waiting room and the reliability model for a recoverable system.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2021, 20, 4; 99--110
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies