Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "binary algebra" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Special m-hyperidentities in biregular leftmost graph varieties of type (2,0)
Autorzy:
Anantpinitwatna, Apinant
Poomsa-ard, Tiang
Powiązania:
https://bibliotekanauki.pl/articles/728744.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
varieties
biregular leftmost graph varieties
identities
term
hyperidentity
M-hyperidentity
binary algebra
graph algebra
Opis:
Graph algebras establish a connection between directed graphs without multiple edges and special universal algebras of type (2,0). We say that a graph G satisfies a term equation s ≈ t if the corresponding graph algebra $\underline{A(G)}$ satisfies s ≈ t. A class of graph algebras V is called a graph variety if $V = Mod_g Σ$ where Σ is a subset of T(X) × T(X). A graph variety $V' = Mod_gΣ'$ is called a biregular leftmost graph variety if Σ' is a set of biregular leftmost term equations. A term equation s ≈ t is called an identity in a variety V if $\underline{A(G)}$ satisfies s ≈ t for all G ∈ V. An identity s ≈ t of a variety V is called a hyperidentity of a graph algebra $\underline{A(G)}$, G ∈ V whenever the operation symbols occuring in s and t are replaced by any term operations of $\underline{A(G)}$ of the appropriate arity, the resulting identities hold in $\underline{A(G)}$. An identity s ≈ t of a variety V is called an M-hyperidentity of a graph algebra $\underline{A(G)}$, G ∈ V whenever the operation symbols occuring in s and t are replaced by any term operations in a subgroupoid M of term operations of $\underline{A(G)}$ of the appropriate arity, the resulting identities hold in $\underline{A(G)}$.
In this paper we characterize special M-hyperidentities in each biregular leftmost graph variety. For identities, varieties and other basic concepts of universal algebra see e.g. [3].
Źródło:
Discussiones Mathematicae - General Algebra and Applications; 2009, 29, 2; 81-107
1509-9415
Pojawia się w:
Discussiones Mathematicae - General Algebra and Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies