Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "piroliza" wg kryterium: Temat


Tytuł:
The use of microwave pyrolysis for biomass processing
Zastosowanie pirolizy mikrofalowej do przetwarzania biomasy
Autorzy:
Czarnocka, J.
Powiązania:
https://bibliotekanauki.pl/articles/1363952.pdf
Data publikacji:
2015
Wydawca:
Sieć Badawcza Łukasiewicz. Przemysłowy Instytut Motoryzacji
Tematy:
pyrolysis
microwave pyrolysis
biomass
bio-oil
syngas
piroliza
piroliza mikrofalowa
biomasa
bioolej
gaz syntezowy
Opis:
The method of processing biomass of various kinds by microwave-assisted pyrolysis has been presented. The fast pyrolysis process, characterized by rapid heating of the feedstock in the absence of oxygen and rapid cooling of the volatile intermediate reaction products, is one of attractive liquid biofuel production methods. However, the pyrolysis still requires improvements as regards the process yield, quality of liquid biofuel products, and energy efficiency of the process as a whole. The microwave pyrolysis is a promising attempt to solve these problems thanks to the fast and efficient feedstock heating through the effect of “microwave dielectric heating”. Before proceeding to the main topic of this paper, the conventional pyrolysis has been characterized. At such a technology, the thermal energy necessary to heat the feedstock is transmitted from the surface into the depth, which is rather a slow process. This has been followed by a presentation of the microwave pyrolysis, where the microwave radiation causes fast and productive bulk heating of the material having been finely ground (the material should be susceptible to the action of microwaves). Moreover, a review of materials used as microwave radiation absorbers, biomass types, and methods of biomass preparation for the process, as well as qualitative and quantitative characteristics of the pyrolysis products obtained, i.e. raw bio-oil, which should be subjected to further processing, and synthesis gas (“syngas”) have been provided.
W artykule zaprezentowano sposób przetwarzania różnych rodzajów biomasy metodą pirolizy wspomaganej mikrofalowo. Proces szybkiej pirolizy charakteryzujący się gwałtownym ogrzewaniem surowca w warunkach beztlenowych i gwałtownym chłodzeniem pośrednich, lotnych produktów reakcji, jest jedną z atrakcyjnych technologii produkcji biopaliw ciekłych. Przed pirolizą nadal stoją wyzwania natury technicznej w zakresie poprawy wydajności procesu i jakości otrzymanych biopaliw ciekłych oraz zwiększenia sprawności energetycznej całego procesu. Piroliza mikrofalowa jest obiecującą próbą rozwiązania tych problemów ze względu na szybkie i efektywne ogrzewanie materiałów poprzez tzw. efekt „mikrofalowego ogrzewania dielektrycznego”. W niniejszej pracy na wstępie scharakteryzowano pirolizę konwencjonalną, w której ciepło niezbędne do ogrzania materiału przenoszone jest od powierzchni do środka materiału, co jest dość powolnym procesem. W dalszej części pracy zaprezentowano pirolizę mikrofalową, w której promieniowanie mikrofalowe powoduje szybkie i wydajne, objętościowe ogrzewanie rozdrobnionego materiału podatnego na działanie mikrofal. Artykuł zawiera ponadto przegląd stosowanych absorbentów promieniowania mikrofalowego, rodzajów biomasy i sposobu przygotowania jej do procesu, charakterystykę jakościową i ilościową otrzymanych produktów pirolizy, tj. surowego bio-oleju, który powinien być poddany dalszej obróbce oraz gazu syntezowego.
Źródło:
Archiwum Motoryzacji; 2015, 67, 1; 11-21
1234-754X
2084-476X
Pojawia się w:
Archiwum Motoryzacji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Piroliza wybranych surowców oraz możliwości aplikacyjne wytworzonego biowęgla
Pyrolysis of selected raw materials and application possibilities of produced biocarbon
Autorzy:
Kufka, D.
Powiązania:
https://bibliotekanauki.pl/articles/169887.pdf
Data publikacji:
2016
Wydawca:
Poltegor-Instytut Instytut Górnictwa Odkrywkowego
Tematy:
biomasa
piroliza
biowęgiel
biomass
pyrolysis
biocarbon
Opis:
W artykule przedstawiono wyniki badań pirolitycznych, które prowadzono z wykorzystaniem modułowego reaktora do termicznej konwersji biomasy. Głównym celem prac była próba podjęcia produkcji biowęgla z surowców biomasowych takich jak słoma rzepaczana, trawa, kiszonka z kukurydzy, pellet sosnowo-świerkowy. Przedstawiono wyniki analiz podstawowych parametrów fizyko-chemicznych wymienionych substratów (zawartość suchej masy, zawartość suchej masy organicznej, popielność). Wykazano, że w założonych warunkach eksperymentalnych całkowitej konwersji do biowęgla ulegał jedynie pellet sosnowo-świerkowy, a pozostałe surowce były konwertowane częściowo. Ponadto w artykule zaproponowano przykładowe kierunki wykorzystania wyprodukowanego biowęgla.
The article presents the results of pyrolysis, which were carried out by using a modular reactor for the thermal conversion of biomass. The main objective of the research was an attempt to take the production of biochar from biomass raw materials such as straw, grass, corn silage and pine-spruce pellet. The paper presents the analysis results of basic physicochemical parameters (dry matter content, organic dry matter content, ash content) of specified substrates. It has been demonstrated, that in the proposed experimental conditions, complete conversion into biochar underwent only a pine - spruce pellet, other raw materials has been converted partially. In addition, the article proposes example directions for use of produced biochar.
Źródło:
Górnictwo Odkrywkowe; 2016, 57, 1; 5-10
0043-2075
Pojawia się w:
Górnictwo Odkrywkowe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Adaptacja modułowego reaktora ciśnieniowego do testów pirolitycznej konwersji biomasy
Adaptation of the modular pressure reactor for the pyrolytic test of biomass conversion
Autorzy:
Kufka, D.
Poterała, K.
Powiązania:
https://bibliotekanauki.pl/articles/169946.pdf
Data publikacji:
2015
Wydawca:
Poltegor-Instytut Instytut Górnictwa Odkrywkowego
Tematy:
piroliza
biomasa
reaktor
pyrolysis
biomass
reactor
Opis:
W artykule scharakteryzowano proces pirolizy, jako metodę konwersji biomasy. Opisano rozwiązania technologiczne wykorzystane przy adaptacji modułowego reaktora ciśnieniowego w celu prowadzenia procesów pirolizy. Ponadto przedstawiono przykładowe możliwości wykorzystania (powstającego w procesie pirolizy) karbonizatu w różnych dziedzinach gospodarki.
This paper describes the process of pyrolysis, as a method of biomass conversion. The technological solutions used for the adaptation the modular pressure reactor, in purpose of carrying the pyrolysis process were described. Moreover, exemplary possibilities to exploit the char (which is produced in the pyrolysis processes) in different areas of the economy were presented.
Źródło:
Górnictwo Odkrywkowe; 2015, 56, 1; 43-46
0043-2075
Pojawia się w:
Górnictwo Odkrywkowe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Koncepcja małego układu kogeneracyjnego zintegrowanego ze zgazowaniem biomasy
The concept of a small cogeneration system integrated with biomass gasification
Autorzy:
Wróblewski, R.
Powiązania:
https://bibliotekanauki.pl/articles/283396.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
zgazowanie
piroliza
biomasa
kogeneracja
gasification
pyrolysis
biomass
cogeneration
Opis:
Wyczerpywanie się energetycznych surowców kopalnych jest powodem stosowania wysokosprawnych technologii w tym kogeneracji, jak również poszukiwania możliwości wykorzystania odnawialnych zasobów energii. Z tego względu wspieranie rozwoju rozproszonych źródeł kogeneracyjnych i technologii wykorzystujących odnawialne źródła energii znajduje poparcie w polityce energetycznej Polski do roku 2030. W artykule porównano wybrane właściwości biomasy i węgla jako paliw do procesu zgazowania. Biomasa ma znaczny udział tlenu w składzie, co powoduje również dużą ilość substancji lotnych. W artykule omówiono również proces zgazowania, jego etapy oraz właściwości gazogeneratorów ze złożem stalym stosowanych w małych układach kogeneracyjnych. Przedstawiono również wyniki badań procesu pirolizy przeprowadzone w Laboratorium Paliw i Przetwarzania Energii Instytutu Elektroenergetyki Politechniki Poznańskiej. Proces pirolizy badano pod kątem czasu trwania i stopnia odgazowania biomasy w zależności od temperatury procesu (mocy płyty grzejnej) oraz grubości warstwy pelletów. Rezultaty prób przedstawiono na rysunkach 2–6. Ostatnia część artykułu zawiera opis koncepcji elektrociepłowni z silnikiem spalinowym zasilanym gazem syntezowym pochodzącym ze zgazowania biomasy. Instalacja, będąca w trakcje realizacji, pozwoli na przeprowadzenie szeregu badań i analiz dotyczących procesu zgazowania, analizy gazu generatorowego jak i układu jego oczyszczania oraz parametrów pracy silnika po konwersji na nowe paliwo.
Depletion of fossil fuels is the reason for the use of high efficiency technology, including cogeneration, as well as to seek opportunities for the use of renewable energy resources. For this reason, supporting the development of the distributed cogeneration systems and technologies that use renewable energy sources is supported by the Polish Energy Policy until 2030. Article compares selected properties of biomass and coal as a fuel for the gasification process. Biomass has a big participation of oxygen in the composition which causes the large amount of volatile substances. This article discusses also the gasification process, its stages and characteristics of the fixed bed gasifier used in small cogeneration systems. It also presents the results of the pyrolysis process carried out in the Laboratory of Fuel and Energy Conversion of Institute of Electrical Power Engineering of Poznań University of Technology. The pyrolysis process was tested for the degree of biomass degasification and duration of the process depending on the temperature of the process and the pellets layer thickness. Testing results are shown in Figures 2–6. The last part of the article describes the concept of power plants with a combustion engine powered by syngas from biomass gasification. This installation which is in the course of implementation, will conduct a series of studies and analyzes of the gasification process, analyzes of the syngas and its treatment and the parameters of the engine, after conversion to the new fuel.
Źródło:
Polityka Energetyczna; 2014, 17, 4; 159-170
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Piroliza biomasy jako źródło energii
Pyrolysis of biomass as a source of energy
Autorzy:
Retajczyk, M.
Wróblewska, A.
Powiązania:
https://bibliotekanauki.pl/articles/171618.pdf
Data publikacji:
2018
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
piroliza
biomasa
odpady
energia
pyrolysis
biomass
waste
energy
Opis:
The use of fossil fuels for energy purposes results in the emission of large amounts of carbon dioxide into the atmosphere, which in turn contributes to global warming, which is one of the civilization threats to the environment, and thus to modern civilization. The use of waste of plant origin to obtain energy reduces the amount of greenhouse gas (carbon dioxide) in the atmosphere, which results from the fact that plants take CO2 in the process of photosynthesis. Plants are a carbon reservoir, which in turn allows the use of biomass to obtain biofuels. In addition, the use of waste to obtain energy, solves the problem of storage, which is particularly problematic in the case of tires and plastics, which pose a potential threat to the natural environment. The article describes the composition of waste used for thermal processes and explains why waste is a good source of energy. In addition, it presents the division of thermal processes into three types: combustion, gasification and pyrolysis. In the further part of the article, the division of pyrolysis can be found due to its speed and related differences in the content of individual products and the division of this type of thermal processes, due to the type of reactors used. In addition, the article presents the conditions for conducting thermal processes and their impact on the content of solid, gaseous and liquid products. The work presents the construction of reactors, the principle of their operation, as well as the advantages and disadvantages resulting from their use. In the further part of the article, microalgae are described as an efficient source of fuel in combination with other widely used products of plant origin. In the last part of this work, the composition of products obtained after pyrolysis of waste of various origins was compared.
Źródło:
Wiadomości Chemiczne; 2018, 72, 3-4; 127-146
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reaktory do pirolizy odpadów i biomasy
Reactors for waste and biomass pyrolysis
Autorzy:
Jaworski, T. J.
Powiązania:
https://bibliotekanauki.pl/articles/970812.pdf
Data publikacji:
2017
Wydawca:
AXIS MEDIA
Tematy:
reaktor
piroliza
odpady
biomasa
reactor
pyrolysis
waste
biomass
Opis:
Na proces pirolizy wpływa wiele parametrów, które decydują o rodzaju oraz ilości otrzymanych produktów. W zależności od tych parametrów można otrzymać różne wydajności karbonizatu, oleju oraz gazu pirolitycznego. Kontrola tych parametrów jest ważna jeśli chcemy otrzymać np. więcej frakcji olejowej. Odpowiedni dobór parametrów pozwala na otrzymanie zamierzonego efektu pirolizy. Najważniejszym czynnikiem mającym wpływ na właściwości produktów pirolizy ma rodzaj użytego odpadu (paliwa). Istnieje jednak bardzo duża ilość czynników mających wpływ na efektywność pirolizy. Pozostałymi parametrami decydującymi o rodzaju i ilości otrzymanych produktów są: rodzaj reaktora, sposób ogrzewania, temperatura procesu, tempo nagrzewania, ciśnienie, sposób przygotowania wsadu, rozmiar cząstek, czas przebywania paliwa w reaktorze, natężenie przepływającego czynnika oraz katalizator w przypadku pirolizy biomasy.
The pyrolysis process is influenced by many parameters that decide about the type and quantity of received products. Depending on these parameters, may be obtained a different efficiency of char, oil and pyrolysis gas. Evaluating of these parameters is important to obtain, for example, more oil fractions. Proper selection of the parameters allows for getting the intended effect of pyrolysis. The most important factor, affecting the properties of pyrolysis products is the type of used waste (fuel). However, there are many factors that influence the efficiency of pyrolysis. Other parameters determining the type and quantity of obtained products are: reactor type, heating method, process temperature, heating rate, pressure, batch preparation method, particle size, reactor fuel residence time, flow rate, and catalyst in the case of biomass pyrolysis.
Źródło:
Piece Przemysłowe & Kotły; 2017, 1; 18-24
2082-9833
Pojawia się w:
Piece Przemysłowe & Kotły
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of thermal conditions of pyrolysis process on the quality of biochar obtained from vegetable waste
Wpływ warunków termicznych procesu pirolizy na jakość biowęgli otrzymanych z odpadów roślinnych
Autorzy:
Molenda, J.
Swat, M.
Osuch-Słomka, E.
Powiązania:
https://bibliotekanauki.pl/articles/297537.pdf
Data publikacji:
2018
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
biochar
biochar structure
carbonate
pyrolysis
waste pyrolysis
vegetable waste
biomass
biowęgiel
struktura biowęgla
karbonizat
piroliza
piroliza odpadów
odpady roślinne
biomasa
Opis:
An effective way of managing natural waste, including waste from the agri-food industry or products that are economically useful can be offered by production of biochar. Biochar is used not only as an energy product, but also as a sorption material for e.g. groundwater treatment, sewage treatment, as well as biogas valorization. Therefore, the aim of the study was to determine the effect of the conditions of cascade heating of selected types of vegetable waste in carbon dioxide on the microstructure and chemical composition of the obtained biochar. Wheat straw, corn waste in the form of dried leaves and stems, as well as flax shives and cherry stones were subjected to pyrolysis. Cascading temperature conditions were programmed for a total time of 100 minutes, including 15 minutes of final heating at 500°C in one variant and at 700°C in the other. After final heating, the products were left in the pyrolytic chamber to cool down spontaneously to room temperature. The biochar samples were next subjected to microscopic examinations coupled with X-ray microanalysis (SEM/EDS) and infrared spectral examination (FTIR). It was found that the pyrolysis yielded biochar in the amount from 26 to 32.3% of the initial charge mass, depending on the conditions of the process and the type of waste. Furthermore, the differences observed in the chemical structure of the surface of the biochar concerned mainly the occurrence of organic oxygen functional groups whose type depends on the pyrolysis temperature. An increase in the temperature of pyrolysis leads to a decrease in the oxygen content of the products obtained, which results in a relative increase in the proportion of char in the product. Biochar obtained at temperatures of up to 500°C contains aromatic rings and quinone groups, whereas those obtained at higher temperatures (up to 700°C) have ether groups embedded mainly in aliphatic cyclic groups.
Efektywnym sposobem zagospodarowania odpadów naturalnych, w tym pochodzących z przemysłu rolno-spożywczego, na produkty użyteczne gospodarczo może być wytwarzanie biowęgli. Znajdują one zastosowanie nie tylko jako produkt energetyczny, ale także jako materiał sorpcyjny, wykorzystywany m.in. do uzdatniania wód gruntowych, oczyszczania ścieków, a także waloryzacji biogazu. W związku z powyższym celem przeprowadzonych prac było określenie wpływu warunków kaskadowego ogrzewania wybranych odpadów roślinnych w atmosferze ditlenku węgla na mikrostrukturę i budowę chemiczną powstających biowęgli. Pirolizie poddano słomę pszeniczną, odpady kukurydziane w postaci wysuszonych liści i łodyg, a także paździerze lniane i pestki wiśni. Kaskadowe warunki temperaturowe zaprogramowano na łączny czas 100 minut, w tym 15-minutowe wygrzewanie końcowe w jednym wariancie w temperaturze 500°C, a w drugim wariancie w temperaturze 700°C. Po końcowym wygrzewaniu pozostawiano produkty w komorze pirolitycznej do samoistnego wystudzenia do temperatury pokojowej. Otrzymane biowęgle poddano następnie badaniom mikroskopowym sprzężonym z mikroanalizą rentgenowską (SEM/EDS) oraz badaniom spektralnym w podczerwieni (FTIR). Stwierdzono, że w wyniku pirolizy otrzymuje się biowęgiel w ilości od 26 do 32,3% początkowej masy wsadu, zależnej od warunków prowadzenia procesu oraz rodzaju odpadów. Natomiast obserwowane różnice w budowie chemicznej powierzchni otrzymywanych biowęgli dotyczą w głównej mierze występowania tlenoorganicznych grup funkcyjnych, których typ jest zależny od temperatury procesu pirolizy. Wzrost temperatury pirolizy prowadzi do obniżenia zawartości tlenu w otrzymywanych produktach, co powoduje relatywne zwiększenie udziału węgla w produkcie. Biowęgle otrzymywane w temperaturach do 500°C posiadają w swej strukturze pierścienie aromatyczne oraz ugrupowania chinonowe, natomiast otrzymywane w wyższych temperaturach (do 700°C) posiadają ugrupowania eterowe wbudowane głównie w alifatyczne ugrupowania cykliczne.
Źródło:
Inżynieria i Ochrona Środowiska; 2018, 21, 3; 289-302
1505-3695
2391-7253
Pojawia się w:
Inżynieria i Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Plazmowe przetwarzanie biomasy odpadowej
Treatment of waste biomass using plasma technology
Autorzy:
Mączka, T.
Miller, R.
Kordylewski, W.
Śliwka, E.
Powiązania:
https://bibliotekanauki.pl/articles/357587.pdf
Data publikacji:
2013
Wydawca:
Politechnika Śląska
Tematy:
biomasa
plazma
odpady
zgazowanie
piroliza
biomass
plasma
waste
gasification
pyrolysis
Opis:
W pracy opisano ideę metody pozyskiwania paliw w procesie plazmowego przetwarzania odpadów, w tym biomasy roślinnej. Podano koncepcję plazmowego przetwarzania materiałów organicznych i przedstawiono opracowaną na tej podstawie prototypową instalację do plazmowego zgazowania/pirolizy. Opisano ogólną zasadę działania plazmowej instalacji zgazowującej i rolę jej poszczególnych elementów w procesie przetwarzania. Podano podstawowe parametry pracy instalacji wyznaczone w trakcie prac nad jej rozruchem. Podano również kierunki dalszych prac nad optymalizacją działania powstałej instalacji, mających na celu opracowanie efektywnej technologii pozyskiwania paliw płynnych ze zgazowania/pirolizy odpadów organicznych, w tym zawierających związki organiczne zakwalifikowane jako odpady niebezpieczne.
The paper presents the idea of obtaining fuels in a process of plasma treatment of organic materials, including biomass. It introduces the concept of plasma treatment of organic matter and shows the prototype installation developed for the purpose of plasma gasification/pyrolysis. A general principle of plasma gasification/pyrolysis installation operation and the role of its particular elements in the gasification process were described. The basic parameters of the installation operation determined during the works on start-up system were given. There were also presented courses of further investigations on optimization of this installation in order to develop more effective technology of gaining liquid fuels by gasification/pyrolysis of organic wastes including organic compounds qualified as hazardous wastes.
Źródło:
Archiwum Gospodarki Odpadami i Ochrony Środowiska; 2013, 15, 1; 19-28
1733-4381
Pojawia się w:
Archiwum Gospodarki Odpadami i Ochrony Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Impact of the temperature of waste biomass pyrolysis on the quality of the obtained biochar
Wpływ temperatury pirolizy biomasy odpadowej na jakość uzyskanych karbonizatów
Autorzy:
Marczak, M.
Karczewski, M.
Makowska, D.
Burmistrz, P.
Powiązania:
https://bibliotekanauki.pl/articles/93837.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
biomass
nutshell
pyrolysis
calorific value
biomasa
łupina
orzech
piroliza
wartość opałowa
Opis:
Combustion and co-combustion of biomass from different sources is one of the most popular technologies applied in Poland. It allows management of numerous industrial, communal and agricultural waste. Organic waste constitutes one of the richest sources of cheap biomass solid fuels since they are very popular. The paper includes an assessment of practical use of biomass waste: hazelnut shell and pistachio nut shell. The impact of pyrolysis temperature (300, 450 and 550°C) of the investigated biomass on the quality of the obtained biochar was determined and the optimal temperature of this process was defined. The quality of the investigated biomass was analysed on account of its use for energy purposes. Numerous advantageous properties of the obtained materials were found out, for instance: low content of ash and a noticeable increase of the calorific value with an increase of the pyrolysis temperature.
Spalanie i współspalanie biomasy różnego pochodzenia to jedno z najczęściej stosowanych technologii w Polsce, które pozwala na zagospodarowanie licznych odpadów przemysłowych, komunalnych i rolniczych. Odpady organiczne ze względu na powszechne występowanie stanowią jedno z najbogatszych źródeł tanich biomasowych paliw stałych. W pracy dokonano oceny praktycznego wykorzystania odpadów biomasowych: łupin orzecha laskowego oraz pistacji. Zbadano wpływ temperatury (300, 450 i 550ºC) pirolizy badanej biomasy na jakość uzyskanych karbonizatów oraz określono optymalną temperaturę tego procesu. Jakość badanej biomasy analizowano pod kątem wykorzystania jej do celów energetycznych. Stwierdzono szereg korzystnych właściwości otrzymywanych materiałów, takich jak: niska zawartość popiołu i zauważalne zwiększenie wartości opałowej wraz ze wzrostem temperatury pirolizy.
Źródło:
Agricultural Engineering; 2016, 20, 3; 115-124
2083-1587
Pojawia się w:
Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Synthesis of Magnetic Materials from Natural Carbon Precursors ‒ a Review
Synteza materiałów magnetycznych z naturalnych prekursorów węgla - przegląd
Autorzy:
Zubrik, A.
Lovas, M.
Matik, M.
Stefusova, K.
Hredzak, S.
Powiązania:
https://bibliotekanauki.pl/articles/317917.pdf
Data publikacji:
2014
Wydawca:
Polskie Towarzystwo Przeróbki Kopalin
Tematy:
magnetic materials
biomass
microwave pyrolysis
sorption
materiały magnetyczne
biomasa
piroliza mikrofalowa
sorpcja
Opis:
Preparation methods, properties and utilization of magnetic materials based on natural carbon precursors are summarized in this short review. Magnetic material is defined as the composite material consist of carbon substance coming from natural precursor such as coal/biomass and magnetic substance. Various processes can be applied to prepare magnetic materials. Pyrolysis of the biomass/coal together with iron ions and coprecipitation of Fe2+/Fe3+ with charcoal are mostly used methods for synthesis of magnetic biochar. The pyrolysis is defined as a thermal degradation in the absence of oxygen, which converts a raw material into different reactive intermediate products: solid (char), liquid and gaseous products. Especially, microwave pyrolysis of natural materials with iron ions is one of the best techniques offering homogenous, rapid and energetically efficient heating system to produce magnetic material. After the synthesis, iron particles are incorporated to the pore carbon structure and can form (especially in thermal process) microparticles as well as nanosized particles with defined structure possessing magnetic properties, high pore volume and high specific surface area. Magnetic carbon is used mainly as an excellent sorbent material mainly for organic pollutants and heavy metals. Moreover, solid/liquid magnetic separation as a rapid and effective technique can be applied in removal of used magnetic biochar from aqueous solution after sorption process. After sorption and pre-concentration, the magnetic sorbent can be effectively regenerated e.g. by high temperature (organic pollutants such as azodyes, pesticides) and leaching methods (inorganic contaminates).
W tym krótkim przeglądzie streszczono metody przygotowywania, właściwości i wykorzystanie materiałów magnetycznych opartych na maturalnych prekursorach węgla. Materiały magnetyczne są zdefiniowane jako materiał kompozytowy składający się z substancji węglowej pochodzących z naturalnych prekursorów takich jak węgiel/biomasa i substancji magnetycznej. Różne procesy mogą być zastosowane do przygotowania materiałów magnetycznych. Piroliza biomasy/węgla wraz z jonami żelaza i współstrąceniem Fe2+/Fe3+ z węglem drzewnym są najczęściej używanymi metodami syntezy magnetycznego biowęgla. Piroliza jest zdefiniowana jako rozkład termalny bez udziału tlenu, który przetwarza surowiec w różne reaktywne produkty pośrednie: stałe (karbonizat), płynne i gazowe produkty. Szczególnie piroliza mikrofalowa materiałów naturalnych z jonami żelaza jest jedną z najlepszych technik oferującą homogeniczny, szybki i energetycznie efektywny system ogrzewania do produkcji materiałów magnetycznych. Po syntezie, jony żelaza są włączane do struktury porowatej węgla i mogą tworzyć (szczególnie w procesach termicznych) mikrocząsteczki jak i nanocząsteczki o zdefiniowanej strukturze posiadające właściwości magnetyczne, dużą objętość porów i dużą powierzchnię właściwą. Węgiel magnetyczny jest używane głównie jako doskonały sorbent głównie dla organicznych zanieczyszczeń i metali ciężkich. Ponadto, magnetyczna separacja substancji stałych od ciekłych może być zastosowana jako szybka i efektywna technika usuwania zużytego biowęgla magnetycznego z roztworów wodnych po procesie sorpcji. Po sorpcji i wstępnej koncentracji, sorbent magnetyczny może być efektywnie zregenerowany np. za pomocą wysokiej temperatury (zanieczyszczenia organiczne takie jak barwniki azowe, pestycydy) i metodami ługowania (zanieczyszczenia nieorganiczne).
Źródło:
Inżynieria Mineralna; 2014, R. 15, nr 2, 2; 127-130
1640-4920
Pojawia się w:
Inżynieria Mineralna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Przegląd technologii otrzymywania węglowodorów syntetycznych z biomasy
Review of technologies of synthetic hydrocarbons production from biomass
Autorzy:
Matuszewska, A.
Powiązania:
https://bibliotekanauki.pl/articles/1221594.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Inżynierów i Techników Przemysłu Chemicznego. Zakład Wydawniczy CHEMPRESS-SITPChem
Tematy:
biomasa
węglowodory syntetyczne
biopaliwa
piroliza
hydroodtlenianie
biomass
synthetic hydrocarbons
biofuels
pyrolysis
hydrodeoxidation
Opis:
W artykule dokonano przeglądu aktualnego stanu wiedzy na temat istniejących i najbardziej rozpowszechnionych metod uzyskiwania węglowodorów syntetycznych. Surowcem wyjściowym do ich produkcji jest biomasa, w tym biomasa odpadowa. Omówiono główne kierunki jej konwersji do węglowodorów: przez zgazowanie, upłynnianie biomasy np. przez jej pirolizę oraz hydroodtlenianie tłuszczy.
This paper presents a short review of existing knowledge about the most popular methods of production of synthetic hydrocarbons. The raw material for these processes is a biomass as well as waste biomass. There has been briefly discussed the main directions of a biomass conversion to hydrocarbons such as: gasification, liquefaction of biomass by pyrolysis, and hydrodeoxidation of fats.
Źródło:
Chemik; 2010, 64, 5; 344-349
0009-2886
Pojawia się w:
Chemik
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie skoncentrowanego promieniowania słonecznego w procesie pirolizy biomasy
Usage of the concentrated solar radiation in the biomass pyrolysis process
Autorzy:
Werle, S.
Powiązania:
https://bibliotekanauki.pl/articles/127258.pdf
Data publikacji:
2016
Wydawca:
Towarzystwo Chemii i Inżynierii Ekologicznej
Tematy:
piroliza
biomasa
energia słońca
badania eksperymentalne
pyrolysis
biomass
solar energy
experimental investigation
Opis:
Wykorzystanie biomasy w Polsce ciągle wzrasta. Niemniej jednak występuje szereg ograniczeń związanych z produkcją biomasy, w szczególności rozwiązania prawne dotyczące ochrony przyrody oraz zasady bioróżnorodności upraw. Do celów energetycznych powinny być zatem wykorzystywane w pierwszej kolejności dostępne lokalnie produkty odpadowe z rolnictwa, przemysłu rolno-spożywczego, gospodarki przestrzennej i inne odpady biodegradowalne, jak chociażby osady ściekowe. Najpopularniejsze termiczne metody przeróbcze tych materiałów w Polsce to spalanie i współspalanie, jednakże stosowanie tych procesów stwarza wiele problemów technicznych. Dodatkowo, zgodnie nową Ustawą o OZE pomoc finansowa dla współspalania została ograniczona. Fakty te powodują, że poszukuje się wciąż nowatorskich rozwiązań wykorzystujących biomasę w procesach termicznych. Przykładem takiego rozwiązania jest technologia pirolizy wykorzystująca energię słońca do etapu inicjacji (i podtrzymywania) procesu. Piroliza polega na termicznym przekształceniu materii organicznej (biomasy) bez obecności tlenu do postaci ciekłej, stałej i gazowej. W pracy przedstawiono analizę wybranych rozwiązań wykorzystania skoncentrowanego promieniowania słonecznego w procesie pirolizy biomasy odpadowej. Na tym tle przedstawiono koncepcję autorskiego rozwiązania instalacji do pirolizy słonecznej.
Thermal methods of the waste biomass utilization are gaining importance for many years. Nevertheless, there are a number of restrictions related to the production of biomass, in particular legal solutions concerning the environmental protection and the principles of biodiversity crops. Therefore, for energy purposes locally available waste products from agriculture, agricultural - food industry, spatial and other biodegradable waste, like the sludge should be used. Nevertheless, these processes are quite problematic taken into consideration technological point of view. Moreover, in case of the Polish market the new Act of the renewable energy sources should be also emphasized. Based on this document, co-financial assistance of the co-combustion installation will be limited. All presented facts cause that new pioneer and innovative thermal solutions for biomass conversion are needed. An example of such technology is pyrolysis. Pyrolysis is the thermal conversion process of organic matter (biomass) in the absence of oxygen to form a liquid, solid and gaseous product. The paper presents an analysis of selected solutions using concentrated solar radiation in the process of waste biomass pyrolysis. Against this background, a concept of author concept of the pyrolysis solar installations was presented.
Źródło:
Proceedings of ECOpole; 2016, 10, 1; 333-340
1898-617X
2084-4557
Pojawia się w:
Proceedings of ECOpole
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Proces pirolizy mikroalg jako efektywny sposób pozyskania ciekłego biopaliwa
Pyrolysis of microalgae as an effective process to derive liquid biofuels
Autorzy:
Wadrzyk, M.
Jakobiec, J.
Powiązania:
https://bibliotekanauki.pl/articles/35100.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Instytut Agrofizyki PAN
Tematy:
mikroalgi
piroliza
surowce roslinne
biomasa
biopaliwa ciekle
microalga
pyrolysis
plant raw material
biomass
liquid biofuel
Opis:
W artykule zamieszczono informacje dotyczące kierunku rozwoju źródeł biopaliw pochodzenia roślinnego. Jednym z potencjalnych źródeł najbliższej przyszłości mogą być mikroalgi. Omówiono proces konwersji biomasy mikroalg, w tym proces pirolizy obejmujący pozyskanie ciekłego biopaliwa zwanego bio-olejem oraz możliwości praktycznego zastosowania.
In this article information about development trends of new biofuels sources is presented. One of the potential raw materials in the nearest future could be microalgae. In this work conversion processes of microalgae, especially pyrolysis, are described. The potential of practical usage of bio-oils derived from microalgae is also mentioned.
Źródło:
Acta Agrophysica; 2011, 17, 2[189]
1234-4125
Pojawia się w:
Acta Agrophysica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Technologie produkcji biowęgla – zalety i wady
Technologies for the production of biochar – advantages and disadvantages
Autorzy:
Dębowski, M.
Pawlak-Kruczek, H.
Czerep, M.
Brzdękiewicz, A.
Słomczyński, Z.
Powiązania:
https://bibliotekanauki.pl/articles/907105.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Ceramiki i Materiałów Budowlanych
Tematy:
biomasa
piroliza
biowęgiel
toryfikacja
technologia
przegląd
toryfikator
biomass
pyrolysis
biochar
torrefaction
technology
review
torrefaction unit
Opis:
Rosnące zapotrzebowanie na energię zmusza do poszukiwania nowych rozwiązań umożliwiających jej pozyskanie – konwersję. Najprostszym sposobem wytwarzania ciepła oraz energii elektrycznej jest proces spalania paliwa w kotłach energetycznych. Najbardziej popularnymi paliwami są węgiel brunatny lub kamienny. Ze względu na wyczerpalność tych zasobów oraz konieczność redukcji emisji CO2, poszukiwane są inne rozwiązania. Jednym z dobrze rokujących kierunków rozwoju jest spalanie biowęgla, który należy rozumieć jako biomasę poddaną obróbce cieplnej, tj. wolnej pirolizie inaczej toryfikacji. Toryfikacja polega na powolnej dekompozycji termicznej składowych biomasy poprzez jej ogrzewanie do stosunkowo niskiej temperatury w atmosferze bez utleniacza. Przeprowadzono wiele prac badawczych, stąd proces jest w znacznej mierze rozpoznany. W chwili obecnej realizowane są pracę nad przeniesieniem wyników badań i technologii ze skali laboratoryjnej do przemysłowej. W zamyśle konstruktorów jest to, aby reaktory do produkcji biowęgla były w dużym stopniu autotermiczne, tym samym, by w trakcie pracy nie wymagały dodatkowego źródła energii, poza gazem procesowym wydzielanym z materiału poddanego obróbce. W pracy przedstawiono wymagania stawiane biowęglowi i trudności, które trzeba rozwiązać w procesie jego produkcji. Omówiono różne, dostępne na rynku, technologie oraz je porównano.
Rising energy demand forced to seek new solutions for its acquisition – conversion. The simplest method of producing heat and electricity is the combustion process in power plant boilers. The most common fuels are lignite and hard coal. Due to limited resources of these fuels and the need to reduce the CO2 emissions, other solutions are sought. One of the promising direction is the biochar burning, which implies the biomass is subjected to heat treatment – i.e. slow pyrolysis otherwise torrefaction. Torrefaction consists in a slow thermal decomposition of biomass components by heating it to a relatively low temperature in the atmosphere without oxidant. Many studies conducted thus the process is largely recognized. Currently work on the transfer of research results and technologies from the laboratory scale to industrial scale are carried out. The intention of designers is to reactors for the production of biochar were largely autothermal thereby that during operation does not require an additional power source, otherwise the process gas is secreted from the treated material. The paper presents what are the requirements for biochars and shows difficulties that must be solved in the process of their production. Various technologies available on the market are shown, together with a comparison of their advantages and disadvantages.
Źródło:
Prace Instytutu Ceramiki i Materiałów Budowlanych; 2016, R. 9, nr 26, 26; 26-39
1899-3230
Pojawia się w:
Prace Instytutu Ceramiki i Materiałów Budowlanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie chromatografii gazowej i cieczowej w badaniach produktów ciekłych pirolizy mikrofalowej
Implementation of gas and liquid chromatography in the study of liquid products of microwave-assisted pyrolysis
Autorzy:
Burnus, Zygmunt
Markowski, Jarosław
Powiązania:
https://bibliotekanauki.pl/articles/2143379.pdf
Data publikacji:
2022
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
chromatografia gazowa
chromatografia cieczowa
spektrometria mas
biomasa
piroliza mikrofalowa
gas chromatography
liquid chromatography
mass spectrometry
biomass
microwave pyrolysis
Opis:
W niniejszej pracy zbadano możliwości wykorzystania technik chromatografii gazowej GC-FID oraz GC-MS wspomaganych klasyczną chromatografią cieczową LC do badania składników biooleju pochodzącego z pirolizy biomasy stałej. Badania biomasy i produktów jej przerobu mają na celu rozwój technologii paliw proekologicznych i/lub zawierających frakcje otrzymywane z biomasy lub surowców odpadowych. Celem tych działań jest stopniowe zwiększanie wykorzystania źródeł energii pochodzących z surowców odnawialnych przy jednoczesnym ograniczaniu zastosowania surowców kopalnych. Jest to jedno z działań, których efektem ma być ograniczenie emisji GHG. Działanie to jest związane z wytycznymi dyrektyw Unii Europejskiej nakazujących wzrost udziału odnawialnych źródeł energii w transporcie oraz energetyce. Są to dyrektywy 2003/30/WE oraz 2009/28/WE, dotyczące promowania użycia biopaliw lub innych paliw odnawialnych w transporcie oraz wzrostu udziału pozyskiwania energii ze źródeł odnawialnych w różnych sektorach krajów Wspólnoty Europejskiej. Energetyczne wykorzystanie biomasy to jeden z głównych obszarów zainteresowania polityki energetycznej Polski, zbieżnej z celami polityki wyznaczonymi przez Unię Europejską. W niniejszym artykule dokonano przeglądu literatury w zakresie rodzajów biomasy występującej w Polsce oraz zastosowania technik chromatografii gazowej i cieczowej (Py-GC, GC-MS, GC-FID) w badaniu ciekłych produktów procesu pirolizy biomasy. Opracowano warunki chromatograficzne badania produktów ciekłych pirolizy biomasy stałej przy wykorzystaniu reaktora mikrofalowego do pirolizy jako elementu aparatury umożliwiającego badania technikami chromatograficznymi. Przy zastosowaniu dobranych warunków analitycznych wykonano badania ciekłych produktów pirolizy biomasy: miskantu olbrzymiego, słomy, trocin sosnowych, łusek słonecznika i ziaren kawy. Zidentyfikowano składniki biooleju pochodzącego z pirolizy biomasy i zaproponowano metodę oznaczania ilościowego składników biooleju. Wykazano możliwość jednoczesnego zastosowania różnych technik chromatografii gazowej w celu poznania składu chemicznego biooleju pochodzącego z pirolizy mikrofalowej różnego rodzaju biomasy stałej.
In this work, the possibilities of implementation of the GC-FID and GC-MS gas chromatography techniques supported by classic LC liquid chromatography to study the components of bio-oil derived from the pyrolysis of solid biomass were examined. Research on biomass and its processing products is aimed at the development of pro-ecological fuels and / or fuels containing fractions obtained from biomass or waste materials. The aim of these activities is to gradually increase the use of energy sources derived from renewable raw materials and limiting the use of fossil raw materials. It is one of the ways to reduce GHG emissions. This action is related to the guidelines of the European Union Directives describing an increase in the share of renewable energy sources in transport and energy – Directives 2003/30/EC and 2009/28/EC – the promotion of the use of biofuels or other renewable fuels in transport and the increase in the share of energy obtained from renewable sources in various sectors of the European Community. The use of energy obtained from biomass is one of the main areas of interest in Poland's energy policy, consistent with the policy objectives set by the European Union. This article describes the types of biomass found in Poland and the use of gas and liquid chromatography techniques (Py-GC, GC-MS, GC-FID) in the study of liquid products of the biomass pyrolysis process. The chromatographic conditions for testing liquid products of solid biomass pyrolysis with the use of a microwave pyrolysis reactor as an element of the apparatus enabling the research with chromatographic techniques were developed. Using selected analytical conditions, tests were carried out on liquid products of biomass pyrolysis: giant miscanthus, straw, pine sawdust, sunflower husks and coffee grounds. The components of bio-oil derived from biomass pyrolysis were identified and a method for the quantification of bio-oil components was proposed. The possibility of the simultaneous application of various gas chromatography techniques to understand the chemical composition of bio-oil from microwave pyrolysis of various types of solid biomass was demonstrated.
Źródło:
Nafta-Gaz; 2022, 78, 1; 64-79
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies