Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "biomass modelling" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Simulations of fuels consumption in the CHP system based on modernised GTD-350 turbine engine
Autorzy:
Hryniewicz, Marek
Roman, Kamil
Powiązania:
https://bibliotekanauki.pl/articles/2048532.pdf
Data publikacji:
2021
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
biomass
cogeneration
electricity production from biomass
heat production from biomass
mathematical modelling
turbine engine
Opis:
There were done simulations of fuels consumption in the system of electrical energy and heat production based on modernised GTD-350 turbine engine with the use of OGLST programme. In intention the system based on GTD-350 engine could be multifuel system which utilise post-fying vegetable oil, micronised biomass, sludge, RDF and fossil fuels as backup fuels. These fuels have broad spectrum of LHV fuel value from 6 (10 6 J•kg -1 ) (e.g. for sludge) to 46 (10 6 J•kg-1) (for a fuel equivalent with similar LHV as propan) and were simulations scope. Simulation results showed non linear dependence in the form of power function between unitary fuel mass consumption of simulated engine GTD-350 needed to production of 1 kWh electrical energy and LHV fuel value (10 6 J•kg -1). In this dependence a constant 14.648 found in simulations was multiplied by LHV raised to power - 0.875. The R2 determination coefficient between data and determined function was 0.9985. Unitary fuel mass consumption varied from 2.911 (kg•10 -3•W -1•h -1) for 6 (10 6 J•kg -1) LHV to 0.502 (kg•10 -3 •W -1 •h -1) for 46 (10 6 J•kg -1) LHV. There was assumed 7,000 (h) work time per year and calculated fuels consumption for this time. Results varied from 4,311.19 (10 3 kg) for a fuel with 6 (10 6 J•kg -1) LHV to 743.46 (10 3 kg) for a fuel with 46 (10 6 J•kg -1) LHV. The system could use fuels mix and could be placed in containers and moved between biomass wastes storages placed in many different places located on rural areas or local communities.
Źródło:
Journal of Water and Land Development; 2021, 51; 250-255
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mathematical modelling of wooden biomass torrefaction
Autorzy:
Stepien, P.
Bialowiec, A.
Powiązania:
https://bibliotekanauki.pl/articles/52606.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Technologii Drewna
Tematy:
torrefaction
biomass
mathematical modelling
technological parameter
biocarbon
Źródło:
Drewno. Prace Naukowe. Doniesienia. Komunikaty; 2017, 60, 200
1644-3985
Pojawia się w:
Drewno. Prace Naukowe. Doniesienia. Komunikaty
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelling spring barley development using canonical functional model. Preliminary results
Modelowanie rozwoju jęczmienia jarego z wykorzystaniem funkcjonalnego modelu kanonicznego. Wyniki wstepne
Autorzy:
Jankowski, P.
Gozdowski, D.
Powiązania:
https://bibliotekanauki.pl/articles/9855.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Przyrodniczy w Lublinie. Katedra Zastosowań Matematyki i Informatyki
Tematy:
modelling
spring barley
barley
plant development
biomass
functional model
Źródło:
Colloquium Biometricum; 2008, 38
1896-7701
Pojawia się w:
Colloquium Biometricum
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Numerical modelling of a stoker furnace operated under indirect co-firing of biomass
Autorzy:
Litka, R.
Kalisz, S.
Powiązania:
https://bibliotekanauki.pl/articles/185683.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
CFD modelling
stoker
co-firing
gasification
biomass
modelowanie CFD
współspalanie
gazyfikacja
biomasa
Opis:
The subject of the CFD analysis presented in this paper is the process of biomass indirect co-firing carried out in a system composed of a stoker-fired furnace coupled with a gasification reactor. The installation is characterised by its compact structure, which makes it possible to minimise heat losses to the environment and enhance the physical enthalpy of the oxidising agent – flue gases – having a favourable chemical composition with oxygen and water vapour. The test results provided tools for modelling of biomass thermal processing using a non-standard oxidiser in the form of flue gases. The obtained models were used to optimise the indirect co-combustion process to reduce emissions. An overall effect of co-combustion of gas from biomass gasification in the stoker furnace is the substantial reduction in NO emissions by about 22%.
Źródło:
Chemical and Process Engineering; 2016, 37, 2; 235-249
0208-6425
2300-1925
Pojawia się w:
Chemical and Process Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mathematical models use to yield prognosis of perennials on marginal land according to fertilisers doses
Autorzy:
Hryniewicz, Marek
Strzelczyk, Maria
Helis, Marek
Paszkiewicz-Jasińska, Anna
Steinhoff-Wrzesniewska, Aleksandra
Roman, Kamil
Powiązania:
https://bibliotekanauki.pl/articles/2048530.pdf
Data publikacji:
2021
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
biomass
cup plant
fertiliser
Jerusalem artichoke
mathematical modelling
nitrogen
willowleaf sunflower
yield
Opis:
Models describe our beliefs about how the world functions. In mathematical modelling, we translate those beliefs into the language of mathematics. Mathematical models can yield prognose on the base of applied fertiliser dose. In this work results of finding yield mathematical model according to fertiliser (nitrogen) dose for perennials (willowleaf sunflower Helianthus salicifolious, cup plant Silphium perfoliatum and Jerusalem artichoke Helianthus tuberosus) on marginal land are presented. Models were described as normalised square equations for dependence between yield and fertiliser doses. Experiments were conducted in lisymeters and vases for willowleaf sunflower and cup plant. For Jerusalem artichoke experiments were done in vases only. All experiments have been doing during two years (2018 and 2019) for different fertilisers doses (45, 90 and 135 kg N∙ha-1) in three repetitions. From simulations maximal yield could be achieved for following fertiliser doses – willowleaf sunflower 104 kg N∙ha-1, cup plant 85 kg N∙ha-1 and Jerusalem artichoke 126 kg N∙ha-1.
Źródło:
Journal of Water and Land Development; 2021, 51; 233-242
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Model research of gas emissions from lignite and biomass co-combustion in a large scale CFB boiler
Autorzy:
Krzywański, J.
Rajczyk, R.
Nowak, W.
Powiązania:
https://bibliotekanauki.pl/articles/184895.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
biomasa
złoże fluidalne
współspalanie
węgiel brunatny
modelowanie
biomass
circulating fluidised bed
co-combustion
lignite
modelling
Opis:
The paper is focused on the idea of a combustion modelling of a large-scale circulating fluidised bed boiler (CFB) during coal and biomass co-combustion. Numerical computation results for three solid biomass fuels co-combustion with lignite are presented in the paper. The results of the calculation showed that in previously established kinetics equations for coal combustion, some reactions had to be modified as the combustion conditions changed with the fuel blend composition. Obtained CO2, CO, SO2 and NOx emissions are located in borders of ± 20% in the relationship to the experimental data. Experimental data was obtained for forest biomass, sunflower husk, willow and lignite cocombustion tests carried out on the atmospheric 261 MWe COMPACT CFB boiler operated in PGE Turow Power Station in Poland. The energy fraction of biomass in fuel blend was: 7%wt, 10%wt and 15%wt. The measured emissions of CO, SO2 and NOx (i.e. NO + NO2) were also shown in the paper. For all types of biomass added to the fuel blends the emission of the gaseous pollutants was lower than that for coal combustion.
Źródło:
Chemical and Process Engineering; 2014, 35, 2; 217-231
0208-6425
2300-1925
Pojawia się w:
Chemical and Process Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies