Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "substraty organiczne" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Efekty beztlenowego procesu przetwarzania odpadowych substratów organicznych pochodzących z przemysłu mięsnego
Effects of organic substrate from meat processing industry anaerobic transformation process
Autorzy:
Zieliński, M.
Dębowski, M.
Krzemieniewski, M.
Powiązania:
https://bibliotekanauki.pl/articles/1819795.pdf
Data publikacji:
2009
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
biogaz
substraty organiczne
przemysł mięsny
biogas
organic substrate
meat processing industry
Opis:
Proces fermentacji metanowej, powszechnie wykorzystywany do unieszkodliwiania osadów ściekowych [2, 9] w ciągu ostatnich kilkunastu lat znalazł szerokie zastosowanie w oczyszczaniu bardzo stężonych ścieków przemysłowych. [1, 3÷5, 8]. Układy anaerobowe funkcjonują najczęściej jako samodzielne systemy zapewniające jakość odpływu na wymaganym poziomie (ładunek zanieczyszczeń organicznych eliminowany jest w przedziale 70÷90%) lub jako I stopień usuwania zanieczyszczeń, po których następują kolejne etapy oczyszczania. W ostatnich latach tego typu rozwiązania stosowane są w procesach przeróbki odpadowych substratów organicznych w celu ich neutralizacji i pozyskania wysokoenergetycznego biogazu. Na proces fermentacji metanowej składa się szereg przemian biochemicznych, w efekcie których złożone związki organiczne ulęgają przemianie do produktów końcowych w postaci metanu i dwutlenku węgla. W pierwszej kolejności zachodzi hydroliza złożonych związków białek, cukrów, tłuszczy. Proces ten prowadzony jest przez bakterie hydrolizujące, a jego efektem jest powstanie aminokwasów, monosacharydów, wyższych kwasów tłuszczowych.Związki te staja się substratem do kolejnego etapu przemian - kwasogenezy. Jej efektem jest powstanie lotnych kwasów tłuszczowych. Ostatnim etapem jest produkcja metanu, która może zachodzić bądź w wyniku dekarboksylacji kwasu octowego lub poprzez procesy redukcyjno-metanogenne (redukcja CO2 do CH4 przy udziale H2). Ostatni etap fermentacji czyli metanogeneza decyduje o szybkości całego procesu. Szybkość wzrostu mikroorganizmów biorących udział w tej fazie jest znacznie niższa niż bakterii kwasogennych stąd zapewnienie optymalnych warunków dla metanogenezy stanowi o sprawności całego procesu. Co ciekawe wszystkie mikroorganizmy metanogenne zaliczane są do osobnej domeny. W królestwie Procariota wyróżnia się dwie zasadniczo różne grupy organizmów, domenę Bacteria (większość współczesnych szczepów bakterii, brak organizmów metanogennych, niewielka liczba gatunków żyjących w warunkach ekstremalnych) oraz domenę Archea (wszystkie organizmy metanogenne, liczne gatunki żyjących w warunkach ekstremalnych). Stosowanie systemów beztlenowych jest uzasadnione ze względu na uzyskiwane efekty technologiczne i ekonomiczne. Niska energochłonność, pięciokrotnie mniejszy w stosunku do systemów tlenowych przyrost biomasy osadu, ograniczenie rozprzestrzeniania się aerozoli i odorów oraz szybki rozruch nawet po długiej przerwie w eksploatacji to dodatkowe atuty przemawiające za upowszechnianiem metod beztlenowych [6, 7, 10]. Celem badań było określenie wydajności procesu fermentacji metanowej odpadów organicznych pochodzących z przemysłu mięsnego oraz charakterystyka powstającego fermentatu.
Alternative, renewable forms of energy are gaining increased importance in the trend to complement or even substitute conventional energies. Biogas production and utilization is a feasible and energetically interesting projection with an immense resource potential in nature available for energy production. The anaerobic degradation of organic matter is a multi-phase process comprising acidogenesis and subsequent methanogenesis. In the first phase, complex organic materials, carbohydrates, amino acids, long-chain fatty acids and alcohols are degraded to intermediary products such as shortchain fatty acids, which are metabolised in the subsequent phase. The aim of the study was to characterize efficiency of biogas production and parameters of the digested charge. The experiments were conducted under laboratory conditions. Depending on the substrate composition and the scope of the research work, the experiment was divided into four phases. The two stage anaerobic fermentation of liquid municipal organic waste at mesophilic conditions (40 °C) was investigated in a continuously stirred 0,4 dm3 hydrolyser and 4,0 dm3 anaerobic reactor. The time of substrate retention in the biogas system was 40 days, and the load of impurities was about 2.0 kg o. m./m3 ź d.During the experiment physicochemical analyses of raw and digested chargewas performed. The scope of analyses included the dry mass, content of organicsubstances, mineral substances, hydration, total nitrogen, total phosphorus, calcium, magnesium, reaction, volume of biogas and content of methane. Conducted investigations permit to affirm, it that the highest technological effect was observed in stage II experiment, when in substrate composition predominated meat wastes. Biogas quantity was about 510 m3/t dry organic matter. Content of methane in biogas was 65%. The lowest technological efficiency was shown in stage IV. The quantity of biogas was between 370÷410 m3/t dry organic matter. The highest efficiency biogas production was observed near 30 day of exploitation of anaerobic bioreactor. The longer time of exploitation influenced on limitation biogas production and methane kontent
Źródło:
Rocznik Ochrona Środowiska; 2009, Tom 11; 787-797
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Badanie efektywności produkcji biogazu z frakcji organicznej odpadów komunalnych zmieszanej z biomasą pochodzenia rolniczego
The research on efficiency of biogas production from organic fraction of municipal solid waste mixed with agricultural biomass
Autorzy:
Sikora, J.
Powiązania:
https://bibliotekanauki.pl/articles/61433.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Stowarzyszenie Infrastruktura i Ekologia Terenów Wiejskich PAN
Tematy:
produkcja biogazu
substraty organiczne
frakcja organiczna odpadow komunalnych
fermentacja metanowa
wspolfermentacja
biomasa rolnicza
biogaz
efektywnosc produkcji
Opis:
Głównym problemem cywilizacyjnym XXI wieku jest gwałtowny wzrost odpadów i zanieczyszczeń przyczyniających się do degradacji środowiska naturalnego. Już w XX wieku daje się zauważyć wzrost ilości odpadów komunalnych i pochodzących z przemysłu rolno-spożywczego . Ich skład chemiczny stwarza optymalne warunki do rozwoju mikroorganizmów. Bakterie w warunkach tlenowych i beztlenowych rozkładają związki organiczne w procesie fermentacji. W wyniku tej przemiany następuje emisja gazów (CH4, H2S, CO2, NOx) i związków azotowych, fosforowych i potasowych. Związki przedostają się do atmosfery i wód powierzchniowych, naruszają równowagę ekosystemu i powodują jego eutrofizację. Wyróżniamy różnego rodzaju fermentacje, ale fermentacja metanowa, może odgrywać szczególną rolę w odnawialnych źródłach energii i gospodarce odpadami. Po pierwsze przekształca energię zawartą w biomasie w użyteczne paliwo będące źródłem czystej energii odnawialnej niewpływającej negatywnie na środowisko. Biogaz może być spalany w kotle w celu uzyskania energii cieplnej wykorzystanej do ogrzewania pomieszczeń, lub w silniku gazowym napędzającym generator prądu. Warto zauważyć, że ta metoda należy do pożądanych metod przekształcania odpadów tj. recyklingu organicznego.W pracy przedstawiono wyniki badań wytwarzania biogazu z organicznej frakcji odpadów komunalnych w kofermentacji z masą pochodzenia rolniczego. Do zobrazowania potencjału biogazodochodowości badania przeprowadzono na sześciu miksach wsadowych gdzie w każdym występowała frakcja organiczna odpadów komunalnych.
Increase of waste and pollutants which degrade the environment is the main problem of civilization in twenty-first century. In the twentieth century it was observed, that amount of waste from agriculture and the food industry was growing. Their chemical composition creates optimal conditions for microorganisms growth. In aerobic and anaerobic fermentation process, bacteria are decomposing in organic compounds. The result of this change is the emission of greenhouse gas (CH4, H2S, CO2, NOx) and nitrogen compounds, phosphorus and potassium. There are various types of fermentation, but one of them, may play a special role in renewable energy sources and waste management. It is a biogas production. Firstly in this process the energy contained in biomass is converted into useful fuel (source of clean, renewable energy). Secondly biogas can be burned in a boiler for heat energy used for heating equipment, or it can be used in the electric generator. This method belongs to organic recycling. This paper presents the analyses and results of biogas production from organic fraction of municipal waste in the process of co-fermentation with the mass of agricultural waste. To illustrate the potential of economic aspects of biogas production, the study was conducted on six mixes, with different level of the organic fraction selected from municipal solid waste.
Źródło:
Infrastruktura i Ekologia Terenów Wiejskich; 2012, 2/IV
1732-5587
Pojawia się w:
Infrastruktura i Ekologia Terenów Wiejskich
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies